MATH 133 - Calculus with Fundamentals 1
Practice on Absolute Values and Intervals
September 4, 2015

Background

Recall from the video "lecture" for today that the absolute value of a real number is defined as

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

Also, we have several different types of intervals in the real number system written as follows:

$$
\begin{align*}
(a, b) & =\{x \mid a<x<b\} \tag{1}\\
{[a, b] } & =\{x \mid a \leq x \leq b\} \tag{2}\\
{[a, b) } & =\{x \mid a \leq x<b\} \tag{3}\\
(a, b] & =\{x \mid a<x \leq b\} . \tag{4}
\end{align*}
$$

Today we will practice on some problems related to these ideas.

Questions

0) (Warm-up) Real numbers can all be expressed by (possibly infinite or non-repeating) decimal expansions. But exactly what does a decimal expansion like

$$
\pi=3.1415926 \cdots
$$

mean? What does a finite decimal expansion like $\frac{15}{8}=1.875$ mean? (Hint: It's really a way of writing the number as a sum of fractions with denominators of a particular form.)

1) The set of real numbers x satisfying $|x|<17$ is an interval. Write it using the appropriate interval notation.
2) The set of real numbers x satisfying $|x-3| \leq 1$ is also an interval. Write it using the appropriate interval notation.
3) The set of real numbers x satisfying $|3 x+1|<4$ is also an interval. Write it using the appropriate interval notation.
4) Write the interval $(5,9)$ in the form: "the set of all x such that $|x-c|<r$ " for some real numbers c and r.
5) Same as question 4 , but for the interval $\left[-\frac{2}{5}, 3\right]$.
6) Using the graph of temperature versus time over a 24 -hour period at a particular location, on the back of this page answer these questions:

Figure 1: Figure for Question 6
(a) Write the collection of all temperatures measured over the 24 hour period as an interval $[a, b]$ for suitable temperature values a, b in degrees Fahrenheit. (There's an unstated assumption behind this question. Can you see what that is? Does it seem reasonable to make that assumption?)
(b) Estimate the interval $[c, d]$ of times in hours for which the temperature was 16.8 degrees or less.
(c) At how many different times does it appear that the temperature was exactly 40 degrees F ?

Note: The temperature values at the start of each hour are given in the table at the right.

