College of the Holy Cross
 MATH 133, section 1 - Calculus with Fundamentals
 Solutions for Final Exam - December 15, 2015

I. A portion of the graph $y=f(x)$ is given in black (on the top of the next page). Match each equation with one of the red graphs identified with lower-case letters.
A) (5) $y=-f(x+5)$ is letter: \mathbf{d} (shifted 5 units left and reflected across x-axis)
B) (5) $y=f(x+4)-3.2$ is letter: a (shifted 4 units left and 3.2 units down)
C) (5) $y=3 f(x)$ is letter: \mathbf{e} (stretched by a factor of 3 vertically)
D) (5) $y=f(x)+2$ is letter: \mathbf{c} (shifted 2 units up)
E) (5) $y=f(x-4)$ is letter: \mathbf{b} (shifted 4 units right)
F) (5) The correct formula for $f(x)$ is $f(x)=x e^{-x}$, not $f(x)=\cos (x)-1$. Note: $\cos (x)-1$ would have a local maximum at $x=0$ so that cannot be the correct formula.
II. The power delivered by a battery to an apparatus of resistance R (in ohms) is

$$
P(R)=\frac{5 R}{(R+0.5)^{2}}
$$

(in watts).
A) (5) If $R=10$ ohms, what is the power delivered by the battery?
$P(10)=\frac{5 \cdot 10}{(10+0.5)^{2}} \doteq .45$ watts.
B) (5) A power of 2 watts can be obtained with two different values of the resistance R. What are they?

They are the solutions of $2=\frac{5 R}{(R+0.5)^{2}}$, which rearranges to $2 R^{2}-3 R+.5=0$. By the quadratic formula, the roots are

$$
R=\frac{3 \pm \sqrt{9-(4)(2)(.5)}}{4}=\frac{3 \pm \sqrt{5}}{4} \doteq .19,1.3 \text { ohms. }
$$

C) (10) What is the rate of change of the power at $R=10$ ohms?

This is the derivative $P^{\prime}(10)$. By the quotient rule,

$$
P^{\prime}(R)=\frac{(R+.5)^{2} \cdot 5-5 R \cdot(2 R+1)}{(R+.5)^{4}}
$$

so $P^{\prime}(10) \doteq-.041$ (units are: watts per ohm).

Figure 1: Figure for problem I
III. Compute the following limits. Any legal method is OK.
(A) (10) $\lim _{x \rightarrow 3} \frac{x^{2}-6 x+9}{x^{2}-5 x+6}$.

This is a $0 / 0$ form. We can factor the top and bottom, cancel one $x-3$, then take the limit to obtain:

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-6 x+9}{x^{2}-5 x+6} & =\lim _{x \rightarrow 3} \frac{(x-3)^{2}}{(x-2)(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{(x-3)}{(x-2)} \\
& =0
\end{aligned}
$$

(B) (10) $\lim _{x \rightarrow 2} \frac{\sqrt{x+7}-3}{x-2}$.

Another $0 / 0$ form. For this one, we multiply the top and bottom by the conjugate
radical, simplify, then evaluate the resulting limit by continuity:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\sqrt{x+7}-3}{x-2} & =\lim _{x \rightarrow 2} \frac{(\sqrt{x+7}-3)(\sqrt{x+7}+3)}{(x-2)(\sqrt{x+7}+3)} \\
& =\lim _{x \rightarrow 2} \frac{(x+7)-9}{(x-2)(\sqrt{x+7}+3)} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)}{(x-2)(\sqrt{x+7}+3)} \\
& =\lim _{x \rightarrow 2} \frac{1}{(\sqrt{x+7}+3)} \\
& =\frac{1}{6}
\end{aligned}
$$

(C) (10) $\lim _{x \rightarrow 0} x \cot (x)$

Rewrite $\cot (x)=\frac{\cos (x)}{\sin (x)}$ and use $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$, so $\lim _{x \rightarrow 0} \frac{x}{\sin (x)}=1$ as well by the limit quotient rule. Then

$$
\lim _{x \rightarrow 0} x \cot (x)=\lim _{x \rightarrow 0} \frac{x \cos (x)}{\sin (x)}=\lim _{x \rightarrow 0} \frac{x}{\sin (x)} \cdot \lim _{x \rightarrow 0} \cos (x)=1 \cdot 1=1
$$

IV.
A) (10) Using the limit definition, and showing all necessary steps to justify your answer, compute $f^{\prime}(x)$ for $f(x)=\frac{1}{x-3}$.

We have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h-3}-\frac{1}{x-3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x-3)-(x+h-3)}{h(x+h-3)(x-3)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(x+h-3)(x-3)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(x+h-3)(x-3)} \\
& =\frac{-1}{(x-3)^{2}} .
\end{aligned}
$$

(Note that this agrees with the result of applying the chain rule to the function $f(x)=$ $(x-3)^{-1}$.)

Using appropriate derivative rules, compute the derivatives of the following functions. You do not need to simplify your answers.
B) (10) $g(x)=\pi x^{e}+\frac{3}{x^{7}}+\sqrt[3]{x}+5$
$g^{\prime}(x)=\pi e x^{e-1}-\frac{21}{x^{8}}+\frac{1}{3} x^{-2 / 3}$.
C) $(10) h(x)=\frac{x^{2}-4 x+1}{x^{3}+4}$
(quotient rule)

$$
h^{\prime}(x)=\frac{\left(x^{3}+4\right)(2 x-4)-\left(x^{2}-4 x+1\right)\left(3 x^{2}\right)}{\left(x^{3}+4\right)^{2}}
$$

D) (10) $i(x)=x \ln (\cos (x))+e^{\cos (x)}$
(product and chain rules)

$$
i^{\prime}(x)=x \cdot\left(\frac{-\sin (x)}{\cos (x)}\right)+\ln (\cos (x))+e^{\cos (x)} \cdot(-\sin (x))
$$

E) (10) $j(x)=\sin ^{-1}(3 x-4)$
(derivative rule for inverse sine and chain rule)

$$
j^{\prime}(x)=\frac{1}{\sqrt{1-(3 x-4)^{2}}} \cdot 3
$$

V. The graph in Figure 2 shows the derivative $f^{\prime}(x)$ for some function $f(x)$ defined on $-1.5 \leq x \leq 2.5$. In particular you should assume $f(1), f(2)$ are defined and finite. Note: This graph is not $y=f(x)$, it is $y=f^{\prime}(x)$. Using the graph, answer these questions:
A) (5) What are the critical points of f in the interval $[-1.5,2.5]$?

Answer: $x=0,1,2$ are all critical points. The "outside ones" at $x=0,2$ have $f^{\prime}(x)=0$, the "middle one" $f^{\prime}(1)$ does not exist because of the vertical asymptote to the graph $y=f^{\prime}(x)$.
B) (5) Classify each of the points you found in part A) as a local maximum, local minimum, or neither.
$x=0$ is a local minimum of $f ; x=1,2$ are neither.
C) (5) Explain briefly how you know your answer in B) is correct.

Answer: From the given graph, $f^{\prime}(x)$ changes sign from negative to positive at $x=0$, so that is a local minimum by the First Derivative Test. At the other two critical points, f^{\prime} does not change sign (it's positive on both sides of $x=1,2$). So they neither local maxima nor local minima.

Figure 2: $y=f^{\prime}(x)$ for problem V.
D) (5) Is $x=0$ a point of inflection of f ? Why or why not?

Answer: No - the concavity of $y=f(x)$ does not change at $x=0$ because $f^{\prime}(x)$ is increasing on both sides of 0 .
E) (5) Does it appear that $f^{\prime \prime}(2)$ exists? (Yes/No):

Answer: No $-y=f^{\prime}(x)$ appears to have a cusp (or maybe a "corner") at $x=2$, so the derivative $f^{\prime \prime}(2)=\left(f^{\prime}\right)^{\prime}(2)$ doesn't exist.
F) (5) Over which interval(s) contained in $[-1.5,2.5]$ is the graph $y=f(x)$ concave down.

Answer: Where f^{\prime} is decreasing, so $(1,2)$ only.
VI. A Spanish factory can produce $P=2 L K^{2}$ million lightbulbs if labor costing L million euros is hired and equipment costing K million euros is obtained. If an order for 1.7 million lightbulbs is received, which combination of L and K will minimize the total cost of labor plus equipment to fill the order?
A) (5) Express the total cost of producing 1.7 million lightbulbs as a function of one of the two variables K, L. (Your choice, but choose wisely!)

Setting $P=1.7$, we have

$$
1.7=2 L K^{2} \Rightarrow L=\frac{.85}{K^{2}}
$$

So the total cost (labor, plus equipment) is

$$
L+K=\frac{.85}{K^{2}}+K
$$

The function we want to minimize is

$$
C(K)=\frac{.85}{K^{2}}+K
$$

(Note that you want to differentiate this, not the formula for P as a function of L and K.)
B) (10) Find a critical point of your function from part A which is a realistic solution of this problem; solve for the other variable.

We have

$$
C^{\prime}(K)=\frac{-1.7}{K^{3}}+1
$$

This is 0 when

$$
K=(1.7)^{1 / 3} \doteq 1.19 \text { million euros }
$$

Then $L=\frac{.85}{(1.19)^{2}} \doteq .60$ million euros.
C) (5) How do you know that your solution minimizes the total cost?

One way to tell is to compute the second derivative of the total cost function (as a function of K):

$$
C^{\prime \prime}(K)=\frac{5.1}{K^{4}}>0
$$

at $K=1.19$ (in fact for all K.) This implies $K=1.19$ is a local minimum by the Second Derivative Test.
VII. (15) A moth ball is evaporating and losing volume at the rate of $.1 \mathrm{~cm}^{3} /$ week. It has the shape of a sphere at all times. How fast is the surface area of the moth ball shrinking when the radius of the ball is 1 cm ? (Note: A sphere of radius r has volume $V=\frac{4 \pi r^{3}}{3}$ and surface area $A=4 \pi r^{2}$.)

Solution: We are given that the volume of the moth ball is decreasing at .1 cubic centimeters per week. This says

$$
-0.1=\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}
$$

Hence when $r=1$,

$$
\frac{d r}{d t}=\frac{-0.1}{4 \pi} \doteq-.008
$$

cm/week. Then

$$
\frac{d A}{d t}=8 \pi r \frac{d r}{d t}=\frac{8 \pi \cdot(-0.1)}{4 \pi}=-0.2
$$

(the units here are (square cm)/week).
VIII. (5) True/False: The graph obtained by shifting $y=\ln (x)$ vertically by 2 units can also be obtained from $y=\ln (x)$ by a horizontal compression. Explain your answer.

This is True because of properties of the logarithm function: Shifting $y=\ln (x)$ vertically by 2 units gives $y=\ln (x)+2$. But

$$
\ln (x)+2=\ln (x)+\ln \left(e^{2}\right)=\ln \left(e^{2} \cdot x\right) .
$$

Multiplying x by a constant greater than 1 "inside" the function compresses the graph horizontally. Since $e^{2}>1$, the graph of this function is a horizontal compression of the graph $y=\ln (x)$.

