MATH 133, section 1 - Calculus With Fundamentals 1
Exam 3 Practice Problems
November 4, 2015
I. Do not use the differentiation rules from Chapter 3 in this question.
A) State the limit definition of the derivative $f^{\prime}(x)$.

Solution: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
B) Use the definition to compute the derivative function of $f(x)=\frac{1}{3 x}$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{3(x+h)}-\frac{1}{3 x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x-(3 x+3 h)}{9 h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-3 h}{9 h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-3}{9 x(x+h)} \\
& =\frac{-3}{9 x^{2}}=\frac{-1}{3 x^{2}} .
\end{aligned}
$$

(Note: this agrees with the result of applying the chain rule to $f(x)=(3 x)^{-1}$.)
C) Find the equation of the line tangent to the graph $y=\frac{1}{3 x}$ at $x=2$.

Solution: At $x=2, f(2)=\frac{1}{6}$ and $f^{\prime}(2)=\frac{-1}{12}$. So the equation of the tangent line is $y-\frac{1}{6}=\left(\frac{-1}{12}\right)(x-2)$, or $y=\frac{-1}{12} x+\frac{1}{3}$.
II. Use the sum, product, quotient, and/or chain rules to compute the following derivatives. You may use any correct method, but must show work for full credit.
A)

$$
\frac{d}{d x}\left(5 x \sqrt{x}-\frac{2}{x^{3}}+11 x-4\right)
$$

Solution: The function can also be written as $5 x^{3 / 2}-2 x^{-3}+11 x-3$. In this form, we only need the power rule to differentiate:

$$
y^{\prime}=\frac{15}{2} x^{1 / 2}+6 x^{-4}+11
$$

B)

$$
\frac{d}{d t}\left(\frac{t^{2} e^{3 t}}{t^{4}+1}\right)
$$

Solution: By the quotient rule, product rule, and chain rule the derivative is:

$$
\frac{\left(t^{4}+1\right) \cdot\left(3 t^{2} e^{3 t}+2 t e^{3 t}\right)-\left(t^{2} e^{3 t}\right) \cdot\left(4 t^{3}\right)}{\left(t^{4}+1\right)^{2}}
$$

C)

$$
\frac{d}{d z} \frac{z^{2}-2 z+4}{z^{2}+1}
$$

Solution: Again using the quotient rule, the derivative is:

$$
\frac{\left(z^{2}+1\right)(2 z-2)-\left(z^{2}-2 z+4\right)(2 z)}{\left(z^{2}+1\right)^{2}}=\frac{2 z^{2}-6 z-2}{\left(z^{2}+1\right)^{2}} .
$$

D)

$$
\frac{d}{d x}\left(\frac{\pi^{2}+\tan \left(e^{\pi}\right)-2 x^{e}}{4}\right)
$$

Solution: Most of this is constant; only the x^{e} from the last term on the top contributes anything nonzero to the derivative:

$$
\frac{-e}{2} x^{e-1}
$$

E)

$$
\frac{d}{d x}\left(\sin (x)\left(x^{7}-\frac{4}{\sqrt{x}}\right)\right)
$$

Solution: Rewrite the fuction as $\sin (x)\left(x^{7}-4 x^{-1 / 2}\right)$. Then by the product rule the derivative is:

$$
\sin (x)\left(7 x^{6}+2 x^{-3 / 2}\right)+\left(x^{7}-4 x^{-1 / 2}\right) \cos (x)
$$

F) Find y^{\prime} (note this is just another way of asking the same question!)

$$
y=\left(e^{2 x}+2\right)^{3}
$$

Solution: By the chain rule, the derivative is:

$$
3\left(e^{2 x}+2\right)^{2}\left(2 e^{2 x}\right)=6 e^{2 x}\left(e^{2 x}+2\right)^{3}
$$

G) Find y^{\prime}

$$
y=\frac{x+1}{3 x^{4}-1}
$$

Solution: By the quotient rule,

$$
y^{\prime}=\frac{\left(3 x^{4}-1\right)(1)-(x+1)\left(12 x^{3}\right)}{\left(3 x^{4}-1\right)^{2}}=\frac{-9 x^{4}-12 x^{3}-1}{\left(3 x^{4}-1\right)^{2}} .
$$

H) Find y^{\prime}

$$
y=\frac{\sin (x)}{1+\cos (x)}+x^{2} \cos \left(x^{3}+3\right)
$$

Solution: By the quotient, product, and chain rules:

$$
\begin{aligned}
y^{\prime} & =\frac{(1+\cos (x)) \cos (x)-\sin (x)(-\sin (x))}{(1+\cos (x))^{2}}-x^{2} \sin \left(x^{3}+3\right)\left(3 x^{2}\right)+2 x \cos \left(x^{3}+3\right) \\
& =\frac{1+\cos (x)}{(1+\cos (x))^{2}}-3 x^{4} \sin \left(x^{3}+3\right)+2 x \cos \left(x^{3}+3\right) \\
& =\frac{1}{1+\cos (x)}-3 x^{4} \sin \left(x^{3}+3\right)+2 x \cos \left(x^{3}+3\right)
\end{aligned}
$$

III. The total cost (in $\$$) of repaying a car loan at interest rate of $r \%$ per year is $C=f(r)$.
A) What is the meaning of the statement $f(7)=20000$?

Solution: At an interest rate of 7% per year, the cost of repaying the loan is 20000 dollars.
B) What is the meaning of the statement $f^{\prime}(7)=3000$? What are the units of $f^{\prime}(7)$? Solution: At an interest rate of 7% per year, the rate of change of the cost of repaying the loan is 3000 dollars per (\% per year).
IV. The quantity of a reagent present in a chemical reaction is given by $Q(t)=t^{3}-3 t^{2}+$ $t+30$ grams at time t seconds for all $t \geq 0$. (Note: For a question like this, I could also give you the plot of the function and ask questions like those below. In this case you need to start from the formula and compute $Q^{\prime}(t)$; if you were given the graph, you need to make the connection between slopes of tangent lines and signs of $Q^{\prime}(t)$ visually.)
(a) Over which intervals with $t \geq 0$ is the amount increasing? (i.e. $Q^{\prime}(t)>0$) decreasing (i.e. $\left.Q^{\prime}(t)<0\right)$?

Solution: $Q^{\prime}(t)=3 t^{2}-6 t+1 . Q^{\prime}(t)=0$ when

$$
t=\frac{6 \pm \sqrt{36-12}}{6}=1 \pm \frac{\sqrt{6}}{3} \doteq 1.816, .184
$$

Since this is a quadratic function with a positive t^{2} coefficient, $Q^{\prime}(t)>0$ for $t>1.816$ and $t<.184 . Q^{\prime}(t)<0$ for $.184<t<1.816$ (t in seconds).
(b) Over which intervals is the rate of change of Q increasing? decreasing?

Solution: The rate of change of Q is increasing when $\left(Q^{\prime}\right)^{\prime}>0$ and decreasing when $\left(Q^{\prime}\right)^{\prime}<0$. The second derivative of Q is $Q^{\prime \prime}(t)=6 t-6$. So $Q^{\prime \prime}(t)>0$ for $t>1$ and $Q^{\prime \prime}(t)<0$ for $t<1$ (t in seconds).
V. A spherical balloon is being inflated at 20 cubic inches per minute. When the radius is 6 inches, at what rate is the radius of the balloon increasing? At what rate is the surface area increasing? (The volume of a sphere of radius r is $V=\frac{4 \pi r^{3}}{3}$ and the surface area is $A=4 \pi r^{2}$.)

Solution: By the chain rule, $\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}$. We are given $\frac{d V}{d t}=20$ when $r=6$, so

$$
\frac{d r}{d t}=\frac{20}{4 \pi(6)^{2}}=\frac{5}{36 \pi}
$$

inches per minute. The rate of change of the surface area is

$$
\frac{d A}{d t}=8 \pi r \frac{d r}{d t}=\frac{48 \pi \cdot 5}{36 \pi}=\frac{20}{3}
$$

square inches per minute.
VI. Review problems 2 and 3 from Quiz 5.

