MATH 133, section 1 - Calculus With Fundamentals 1
Exam 3 Practice Problems
November 4, 2015
I. Do not use the differentiation rules from Chapter 3 in this question.
A) State the limit definition of the derivative $f^{\prime}(x)$.
B) Use the definition to compute the derivative function of $f(x)=\frac{1}{3 x}$.
C) Find the equation of the line tangent to the graph $y=\frac{1}{3 x}$ at $x=2$.
II. Use the sum, product, quotient, and/or chain rules to compute the following derivatives. You may use any correct method, but must show work for full credit.
A)

$$
\frac{d}{d x}\left(5 x \sqrt{x}-\frac{2}{x^{3}}+11 x-4\right)
$$

B)

$$
\frac{d}{d t}\left(\frac{t^{2} e^{3 t}}{t^{4}+1}\right)
$$

C)

$$
\frac{d}{d z} \frac{z^{2}-2 z+4}{z^{2}+1}
$$

D)

$$
\frac{d}{d x}\left(\frac{\pi^{2}+\tan \left(e^{\pi}\right)-2 x^{e}}{4}\right)
$$

E)

$$
\frac{d}{d x}\left(\sin (x)\left(x^{7}-\frac{4}{\sqrt{x}}\right)\right)
$$

F) Find y^{\prime} (note this is just another way of asking the same question!)

$$
y=\left(e^{2 x}+2\right)^{3}
$$

G) Find y^{\prime}

$$
y=\frac{x+1}{3 x^{4}-1}
$$

H) Find y^{\prime}

$$
y=\frac{\sin (x)}{1+\cos (x)}+x^{2} \cos \left(x^{3}+3\right)
$$

III. The total cost (in $\$$) of repaying a car loan at interest rate of $r \%$ per year is $C=f(r)$.
A) What is the meaning of the statement $f(7)=20000$?
B) What is the meaning of the statement $f^{\prime}(7)=3000$? What are the units of $f^{\prime}(7)$?
IV. The quantity of a reagent present in a chemical reaction is given by $Q(t)=t^{3}-3 t^{2}+$ $t+30$ grams at time t seconds for all $t \geq 0$. (Note: For a question like this, I could also give you the plot of the function and ask questions like those below. In this case you need to start from the formula and compute $Q^{\prime}(t)$; if you were given the graph, you need to make the connection between slopes of tangent lines and signs of $Q^{\prime}(t)$ visually.)
(a) Over which intervals with $t \geq 0$ is the amount increasing? (i.e. $Q^{\prime}(t)>0$) decreasing (i.e. $\left.Q^{\prime}(t)<0\right)$?
(b) Over which intervals is the rate of change of Q increasing? decreasing? decreasing?
V. A spherical balloon is being inflated at 20 cubic inches per minute. When the radius is 6 inches, at what rate is the radius of the balloon increasing? At what rate is the surface area increasing? (The volume of a sphere of radius r is $V=\frac{4 \pi r^{3}}{3}$ and the surface area is $A=4 \pi r^{2}$.)
VI. Review problems 2 and 3 from Quiz 5.

