MATH 133 - Calculus with Fundamentals 1
Discussion Day - "Derivative Practice"
November 2, 2015

Background

We have now seen the sum, product, and quotient rules for derivatives. The goals for today are:
(1) To continue practicing using these rules, and
(2) To think about some of the information about a function that we can get from the derivative.

Questions

(1) Differentiate each of these with respect to the indicated variable. Note: you will want to think first about which rule(s) you need to apply, and then apply them. Don't worry too much about simplifying your answers - any correct form is OK for this.
(a) $f(x)=\frac{x^{2}+e^{x}}{\sqrt{x}}$
(b) $g(t)=e^{t}\left(1+\frac{t^{2}}{1+t^{2}}\right)$
(c) $h(z)=\frac{3}{z^{2 / 3}}-z\left(e^{z}+4 z\right)$
(2) Section 3.4 in our book builds on the way we motivated the study of derivatives by considering instantaneous velocities and slopes of tangent lines. If f is any function and $f^{\prime}(a)$ exists, then we can think of $f^{\prime}(a)$ as an (instantaneous) rate of change of f with respect to the variable in f, at a. The units of an instantaneous rate of change are always (units of f-values)/(units of the input variable in f). For instance, if we had a function $P(R)$ giving the electrical power (in units of watts) delivered to a device by a battery, as a function of the resistance of the device (in units of ohms), then the units of $P^{\prime}(R)$ would be watts/ohm. So suppose we have a battery delivering power to a device with

$$
P(R)=\frac{2.25 R}{(R+.5)^{2}},
$$

where $R \geq 0$.
(a) What is the instantaneous rate of change of the power with respect to resistance when $R=3$ ohms? (Give your answer with correct units.)
(b) What is the power delivered to a device with $R=5$ ohms? What is the instantaneous rate of change of the power with respect to resistance when $R=5$ ohms? Give each answer with the correct units.)
(c) Is the instantaneous rate of change of the power with respect to resistance ever equal to zero? What does that mean? Generate a sketch of the graph of $P(R)$ (R on the horizontal axis, P on the vertical axis) and show any points where $P^{\prime}(R)=0$.

Assignment

One writeup of solutions to these problems from each group, due at the end of class.

