MATH 133 - Calculus with Fundamentals 1
Discussion Day on Lines and Linear Functions
September 8, 2015

Background

Every line in the plane is described by an equation of the $A x+B y+C=0$ for some constants A, B, C. If the line is not vertical $(B \neq 0)$, then it is the graph of a function. Recall that we say a function f is linear if $f(x)=m x+b$ for some constants m, b. The number m is called the slope of the line and the constant b is called the y-intercept of the line.

Questions

1) Consider lines with equations of the form $2 x+c y-3=0$.
(a) For which value of c does the line contain the point $(1,2)$?
(b) For which value of c does the line have slope -5 ?
(c) Is there any value of c such that the line is horizontal? Why or why not?
(d) For which value of c is the line perpendicular to the line given by $5 x-3 y+1=0$? (Hint: What is true about slopes of perpendicular lines?)
2) Many materials, including metal rods, expand when they are heated. Consider a steel rod that has length L_{0} (centimeters) when the temperature is T_{0} degrees Celsius. If the temperature is increased by ΔT degrees Celsius, the length of the rod will change by (approximately)

$$
\begin{equation*}
\Delta L=\alpha L_{0} \Delta T, \tag{1}
\end{equation*}
$$

where $\alpha=1.24 \times 10^{-5}$ (and ΔT is assumed to be not too large or too small). The constant α in (1) is called the thermal expansion coefficient of steel (the units of α are $\frac{1}{\text { degrees C }}$).
(a) A steel rod has length $L_{0}=40 \mathrm{~cm}$ at $T_{0}=40$ degrees C. What will the length be at 90 degrees C?
(b) Find the length of the rod at $T=50$ degrees C if the temperature at $T_{0}=100$ degrees C is 65 cm .
(c) Express the length L as a function of T if $L_{0}=65 \mathrm{~cm}$ at $T_{0}=100$ degrees C.
(d) Explain why (1) expresses L as a linear function of T for any given L_{0}, T_{0}.
3) The volume V (in liters) of sample of 3 grams of carbon dioxide at 27 degrees Celsius was measured as a function of the pressure p (in atmospheres) with the results in the following table:

p	0.25	1.00	2.50	4.00	6.00
V	6.72	1.68	0.67	0.42	0.27

Is V (approximately) a linear function of p ? Why or why not? If so, find an approximate formula $V=m p+b$. If not, can you see a equation of a different form for V as a function of p ?

