Introduction to Gröbner Bases and Computational Algebraic Geometry

John B. Little

Department of Mathematics and Computer Science
College of the Holy Cross
jlittle@holycross.edu

April 7, 2017

Varieties - the definition

- Let k be a field (usually \mathbb{Q}, \mathbb{R}, or \mathbb{C} in this talk)
- $k\left[x_{1}, \ldots, x_{n}\right]$ is the polynomial ring in indeterminates x_{i}, coefficients in k
- If $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$, then we define
$\mathbf{V}\left(f_{1}, \ldots, f_{s}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in k^{n} \mid f_{i}\left(a_{1}, \ldots, a_{n}\right)=0, i=1, \ldots, s\right\}$
in k^{n}.
- If we want to be specific about where a variety "lives," we might write something like $V_{\mathbb{R}}\left(f_{1}, \ldots, f_{s}\right)$ for the real points, etc.

First examples

To draw pictures, we will almost always take $k=\mathbb{R}$

- $\mathbf{V}\left(\frac{x^{2}}{9}-\frac{y^{2}}{4}-1\right)$ is a hyperbola in the plane
- $\mathbf{V}\left(x^{2}+y^{2}-1, x-y+\frac{1}{2}\right)$ consists of the two intersection points of the circle defined by $x^{2}+y^{2}-1=0$ and the line defined by $x-y+\frac{1}{2}=0$.
- $\mathbf{V}(z-x y)$ is a hyperbolic paraboloid ("saddle surface") in \mathbb{R}^{3}
- $\mathbf{V}\left(y-x^{2}, z-x^{3}\right)$ is the twisted cubic curve in \mathbb{R}^{3}. It is contained in the saddle surface from the previous bullet.

Parametrizations

Some, but not all varieties can also be described as the images of parametrization mappings

$$
\begin{aligned}
F: k^{m} & \rightarrow k^{n} \\
\left(t_{1}, \ldots, t_{m}\right) & \mapsto\left(F_{1}\left(t_{1}, \ldots, t_{m}\right), \ldots, F_{n}\left(t_{1}, \ldots, t_{m}\right)\right)
\end{aligned}
$$

where the F_{i} are polynomial or rational functions

- For instance, the circle $\mathbf{V}\left(x^{2}+y^{2}-1\right)$ can be parametrized by $F(t)=\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)$; image is the circle minus $\{(-1,0)\}$.
- The twisted cubic $\mathbf{V}\left(y-x^{2}, z-x^{3}\right)$ is the image of $F(t)=\left(t, t^{2}, t^{3}\right)$

An Example (I think) you have studied

- Key idea: probabilities for discrete random variables often depend polynomially on some parameters
- So can think of parametrized families of distributions
- Example: If X is a binomial random variable based on n trials, with success probability θ, then X takes values in $\{0,1, \ldots, n\}$ with probabilities given by:

$$
P(X=k)=p_{k}(\theta)=\binom{n}{k} \theta^{k}(1-\theta)^{n-k}
$$

- Gives:

$$
\begin{aligned}
\varphi: \mathbb{R} & \rightarrow \mathbb{R}^{n+1} \\
\theta & \mapsto\left(p_{0}(\theta), p_{1}(\theta), \ldots, p_{n}(\theta)\right)
\end{aligned}
$$

Example, continued

- Since $\sum_{i} p_{i}(\theta)=1$, the image $\varphi(\mathbb{R})$ is subset of the hyperplane $\mathbf{V}\left(p_{0}+\cdots+p_{n}-1\right)$
- If $\theta \in[0,1]$, then $\varphi(\theta) \in \Delta_{n+1}$, the probability simplex defined by $\sum_{i} p_{i}=1$, and $0 \leq p_{i} \leq 1$ for $i=0, \ldots, n$.
- Question: Is this image a variety?
- With $n=2$,

$$
p_{0}(\theta)=(1-\theta)^{2}, p_{1}(\theta)=2 \theta(1-\theta), p_{2}(\theta)=\theta^{2}
$$

and $\varphi(\mathbb{R})=\mathbf{V}\left(p_{1}^{2}-4 p_{0} p_{2}, p_{0}+p_{1}+p_{2}-1\right)$.

- For general n, we get what's called a rational normal curve of degree $n-a$ (simple) example of a toric variety

What do we want to know about varieties?

Given a variety $V=\mathbf{V}\left(f_{1}, \ldots, f_{s}\right)$ might ask

- Is $V=\emptyset$? If not, what points does it contain?
- If V is finite as a set in k^{n}, how many points does it have?
- If V is not finite, how does it decompose as a union of varieties, what are their dimensions, etc.?
- The answers are nicest if k is algebraically closed(!) Then there's an especially close connection between varieties and ideals in $k\left[x_{1}, \ldots, x_{n}\right]$.
- Then, invariants of a variety like degree, genus (for curves $-\operatorname{dim} V=1$), \ldots

To Ideals

The set of defining equations $f_{1}=0, \ldots, f_{s}=0$ defining a variety $V=\mathbf{V}\left(f_{1}, \ldots, f_{s}\right)$ is never unique.

- First notice that if g, \ldots, g_{s} are any polynomials at all and $\left(a_{1}, \ldots, a_{n}\right) \in V\left(f_{1}, \ldots, f_{s}\right)$, then $f=g_{1} f_{1}+\cdots+g_{s} f_{s}$ satisfies

$$
f\left(a_{1}, \ldots, a_{n}\right)=g_{1}\left(a_{1}, \ldots, a_{n}\right) \cdot 0+\cdots+g_{1}\left(a_{1}, \ldots, a_{n}\right) \cdot 0=0
$$

- Hence f also vanishes at every point of $V=\mathbf{V}\left(f_{1}, \ldots, f_{s}\right)$, and
- It follows that $\mathbf{V}\left(f_{1}, \ldots, f_{s}, f\right)=\mathbf{V}\left(f_{1}, \ldots, f_{s}\right)$

More motivation

- This gives a way to detect extra, unneeded equations in some cases: If $V=\mathbf{V}\left(f_{1}, \ldots, f_{s}\right)$ and $f_{s}=g_{1} f_{1}+\ldots+g_{s-1} f_{s-1}$ for some polynomials g_{1}, \ldots, g_{s-1}, then $V=\mathbf{V}\left(f_{1}, \ldots, f_{s-1}\right)$ also.
- Finding polynomials $f=g_{1} f_{1}+\ldots+g_{s} f_{s}$ with "special" features like factorizations can also be useful.
- Example: Consider $W=\mathbf{V}\left(x^{2}+y^{2}+z^{2}-1, x^{2}+y^{2}-\frac{1}{4}\right)$ in \mathbb{R}^{3}. Notice:

$$
\begin{aligned}
(1)\left(x^{2}+y^{2}+z^{2}-1\right) & +(-1)\left(x^{2}+y^{2}-\frac{1}{4}\right)=z^{2}-\frac{3}{4} \\
& =(z-\sqrt{3} / 2)(z+\sqrt{3} / 2)
\end{aligned}
$$

What does this tell us about the variety W ?

Ideal generated by f_{1}, \ldots, f_{s}

Definition 1

Let $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$. The ideal generated by the f_{1}, \ldots, f_{s} is the subset of $k\left[x_{1}, \ldots, x_{n}\right]$ defined by

$$
\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\{g_{1} f_{1}+\cdots+g_{s} f_{s} \mid g_{i} \in k\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

For instance the example on the last slide shows

$$
z^{2}-\frac{3}{4} \in\left\langle x^{2}+y^{2}+z^{2}-1, x^{2}+y^{2}-\frac{1}{4}\right\rangle
$$

Ideals

Note that $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ has the following properties:
a. If $f, g \in I$, then $f+g \in I$
b. If $f \in I$ and $h \in k\left[x_{1}, \ldots, x_{n}\right]$, then $h \cdot f \in I$

Definition 2

A nonempty subset I of a $k\left[x_{1}, \ldots, x_{n}\right]$ is said to be an ideal if
a. $f, g \in I$ implies $f+g \in I$, and
b. $f \in I$ and $h \in k\left[x_{1}, \ldots, x_{n}\right]$ implies $h \cdot f \in I$.

Given any $f_{1}, \ldots, f_{s},\left\langle f_{1}, \ldots, f_{s}\right\rangle$ satisfies this definition. But are there other ideals too in $k\left[x_{1}, \ldots, x_{s}\right]$ - (perhaps ones with only infinite generating sets)? The answer is "no" - we'll see an explanation shortly.

Other examples of ideals

The answer is not so clear at first:

- Let $S \subset k^{n}$ be any subset (for example a variety),

$$
\mathbf{I}(S)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f(a)=0 \text { all } a=\left(a_{1}, \ldots, a_{n}\right) \in S\right\}
$$

Easy to check this satisfies the definition. (Why?)

- If I is an ideal in $k\left[x_{1}, \ldots, x_{n}\right], \sqrt{I}$ (the radical of I) is

$$
\sqrt{I}=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f^{k} \in I \text { for some } k \geq 1\right\}
$$

- Have:

Theorem 3

Let I be an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. Then \sqrt{I} is an ideal.

An observation

Theorem 4

Let $V=V\left(f_{1}, \ldots, f_{s}\right)$ be a variety, and let
$\left\langle g_{1}, \ldots, g_{t}\right\rangle=\left\langle f_{1}, \ldots, f_{s}\right\rangle$. Then $V=V\left(g_{1}, \ldots, g_{t}\right)$ also.

- In other words, it's better to think that varieties are defined by ideals, not particular sets of equations - we'll write $\mathbf{V}(I)$.
- Proof: $V \subset \mathbf{V}\left(g_{1}, \ldots, g_{t}\right)$ is more or less clear since each $g_{i}=h_{i 1} f_{1}+\cdots+h_{i s} f_{s}$ for some polynomials $h_{i j}$.
- The reverse inclusion follows in the same way since each $f_{j}=p_{j 1} g_{1}+\cdots p_{j t} g_{t}$ for some polynomials $p_{j i}$. QED

I(V(I))

- Suppose we start with an ideal and look at the variety $\mathbf{V}(I)$. Is $\mathbf{I}(\mathbf{V}(I))=I$?
- One inclusion is always true. Which one?
- Answer to first question: not always! Example: Let $I=\left\langle x^{2}\right\rangle$ in $\mathbb{R}[x, y]$. Then $\mathrm{V}(I)$ is the y-axis in the plane, and it's not too hard to show $\mathrm{I}(\mathbf{V}(I))=\langle x\rangle \neq I$.
- In fact, it follows directly that $\sqrt{I} \subset \mathbf{I}(\mathbf{V}(I))$: If $f \in \sqrt{I}$, then $f^{k} \in I$ for some $k \geq 1$. At any point a in $\mathbf{V}(I)$, $\left(f^{k}\right)(a)=(f(a))^{k}=0$, which implies $f(a)=0$. Therefore, $f \in \mathbf{I}(\mathbf{V}(I))$.

$\mathrm{I}(\mathrm{V}(\mathrm{I}))$, continued.

- On the other hand, here is another example where $\mathbf{I}(\mathbf{V}(I))=I$ is true. As above $I \subset \mathbf{I}(\mathbf{V}(I))$ always holds.
- Say $I=\left\langle y-x^{2}\right\rangle$ in $\mathbb{R}[x, y]$. Then $\mathbf{V}(I)$ is the usual parabola.
- Given any $f(x, y)$ we can substitute $f(x, y)=f\left(x,\left(y-x^{2}\right)+x^{2}\right)$ expand out and collect terms to obtain:

$$
f(x, y)=q(x, y)\left(y-x^{2}\right)+r(x)
$$

- If $f \in \mathbf{I}(\mathbf{V}(I))$ (that is if f vanishes at every point of the parabola $y-x^{2}$), then we must have $r(x)=0$ for all $x \in \mathbb{R}$.
- But that implies $r(x)$ is the zero polynomial, so $f \in\left\langle y-x^{2}\right\rangle$. This shows $\mathbf{I}(\mathbf{V}(I)) \subset I$ in this case, so they are equal.

Nullstellensätze

Theorem 5 (Weak Nullstellensatz)

If k is algebraically closed, $\mathbf{V}(I)=\emptyset \Leftrightarrow I=k\left[x_{1}, \ldots, x_{n}\right]$.
(Can be understood as the "multivariable Fundamental Theorem of Algebra")

Theorem 6 (Hilbert's Nullstellensatz)
If k is algebraically closed, then $\mathbf{I}(\mathbf{V}(I))=\sqrt{I}$.
Both statements can fail without the hypothesis, e.g.
$\mathbf{V}_{\mathbb{R}}\left(x^{2}+y^{2}\right)=\emptyset$, but $\left\langle x^{2}+y^{2}\right\rangle \neq \mathbb{R}[x, y]$.

The key idea - "big picture"

- Particular generating sets ("bases") for ideals contain the information we need to answer questions posed before
- Among the "nicest" are the Gröbner bases
- Moreover each ideal I has many different Gröbner bases depending on monomial orders
- Potential downside: computing them takes a lot of computational effort and storage space in realistic cases (too much to do by hand); software like Singular, Macaulay 2, CoCoA, Magma, Sage, Maple typically used.
- In big examples, a very fast computer and or significant cleverness might be required!
- In really big examples, might be infeasible altogether

A first monomial order - lexicographic order

- In $k\left[x_{1}, \ldots, x_{n}\right]$, let's start out by assuming
$x_{1}>x_{2}>\cdots>x_{n}$. Then we get a first example of a monomial order by the following:

Definition 7

We say $x^{\alpha}>_{\text {lex }} x^{\beta}$ if the leftmost nonzero entry in $\alpha-\beta \in \mathbb{Z}^{n}$ is positive.

- Example: $\ln k[x, y, z]$, let $x^{\alpha}=x^{3} y^{4} z$ and $x^{\beta}=x^{2} y z^{8}$.
- Then $\alpha=(3,4,1), \beta=(2,1,8), \alpha-\beta=(1,3,-7)$
- So $x^{3} y^{4} z>_{\text {lex }} x^{2} y z^{8}$ (with $x>y>z$).

Another lex example

- Consider the polynomial $f(x, y)=x^{3} y^{3}+x^{5}+x y^{4}$ from before
- Which is the lex leading term (taking $x>y$)?
- The exponent vectors are $(3,3),(5,0),(1,4)$.
- In lex order, we have $(5,0)>_{\text {lex }}(3,3)>_{\text {lex }}(1,4)$
- Note: lex order is analogous to dictionary order for words(!)

A second order - graded reverse lex order

Definition 8

We say $x^{\alpha}>_{\text {grevlex }} x^{\beta}$ if $|\alpha|>|\beta|$ or if $|\alpha|=|\beta|$ and in $\alpha-\beta$ the rightmost nonzero entry is negative.

- Example: $x^{3} y^{2} z>_{\text {grevlex }} x^{4} z$ as for grlex
- Example: $x^{4} y z>_{\text {grevlex }} x^{3} y^{2} z$ since total degrees are both 6 , but $(4,1,1)-(3,2,1)=(1,-1,0)$
- Note that $f(x, y, z)=x^{2} y^{2} z^{2}+x y^{4} z+x^{5}$ has different leading terms depending on which of the orders lex, grevlex we use

Why different monomial orders?

- When we introduce Gröbner bases, we'll see a monomial order is built into the definition
- Best answer - GB's with respect to different monomial orders do different (and all useful) things!
- lex order GB's systematically eliminate variables (good for direct approach to solving systems of equations, but computationally "expensive")
- GB's with respect to graded orders (including grevlex, are usually less "expensive" computationally
- There are also conversion algorithms to go from a GB with respect to one order to a GB with respect to another order

Leading terms, etc.

- Given a monomial order, we get a leading term in each polynomial.
- For instance, if $f(x, y, z)=2 x^{3} y^{2}+\frac{1}{3} x y^{2} z+4 z^{5}$ and we use $>_{\text {lex }}$ (with $x>y>z$), then
- $L T_{>_{\text {lex }}}(f)=2 x^{3} y^{2}$ (including the coefficient)
- If order is clear from context we'll often omit it

Questions about varieties

Division in $k\left[x_{1}, \ldots, x_{n}\right]$

- Major difference with 1-variable case - we'll allow more than one divisor f_{1}, \ldots, f_{s} (reason: not every ideal is generated by a single polynomial). So there will be as many quotients as divisors.
- There can be several $L T\left(f_{i}\right)$ that divide $L T$ of the dividend. If so, we'll go down the list of the f_{i} from the start and use the first one found.
- Second major difference with 1-variable case - when a term is not divisible by any of the $L T\left(f_{i}\right)$, it goes into the remainder, but division is not necessarily finished.

Division theorem

Theorem 9

Given any input f_{1}, \ldots, f_{s}, f, and a monomial order, there is a division algorithm that terminates and yields an expression

$$
f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r
$$

where
i. If $a_{i} f_{i} \neq 0$, then $L T\left(a_{i} f_{i}\right) \leq L T(f)$
ii. If $r \neq 0$, then no monomial in r is divisible by $L T\left(f_{i}\right)$ for any $i, 1 \leq i \leq s$.
(Note: there is a sense in which this expression is unique too, but it's more subtle than in the 1 -variable case)

Example

Here's a first example. Suppose $f_{1}=x z-y^{2}, f_{2}=x^{3}-y z$ and use lex order with $x>y>z$ so the first term in each is the leading term. Say $f=x^{4}+x^{3} z$. [work out on board]

- Result is

$$
x^{4}+x^{3} z=\left(x^{2}+y\right)\left(x z-y^{2}\right)+(x)\left(x^{3}-y z\right)+\left(x^{2} y^{2}+y^{3}\right)
$$

Observations - an ideal membership test?

- If $r=0$, it follows that $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- But the converse fails. Here is an example:
- Say f_{i} are as above: $f_{1}=x y+x+1, f_{2}=y^{2}-x$. If we take $f=y f_{1}-x f_{2}=x y+y+x^{2}$, and divide by $\left(f_{1}, f_{2}\right)$ in that order, we get
$x y+y+x^{2}=(1)(x y+x+1)+(0) \cdot\left(y-x^{2}\right)+\left(x^{2}+y-x-1\right)$
- Doesn't seem especially useful (yet)!

Motivation for definition of Gröbner bases

- Let $f_{1}=x y+1, f_{2}=y^{2}-x$, $f=y f_{1}-x f_{2}=y-x^{2} \in I=\left\langle f_{1}, f_{2}\right\rangle$
- If we use $>_{\text {grlex }}$, then $L T\left(f_{1}\right)=x y, L T\left(f_{2}\right)=y^{2}$, but $L T(f)=-x^{2}$
- If we divide f by $\left(f_{1}, f_{2}\right)$, then $r \neq 0$, even though $f \in\left\langle f_{1}, f_{2}\right\rangle$
- The leading terms of the given generators f_{1}, f_{2} don't account for all possible leading terms of elements of I
- Goal: "good" generating sets satifying $f \in I \Leftrightarrow r=0$ on division (would give an ideal membership test!)
- Equivalently, we want generators $\left\{g_{1}, \ldots, g_{t}\right\}$ for I such that for every $f \in I, L T(f)$ is divisible by $L T\left(g_{i}\right)$ for some i.

The ideal of leading terms

- Start from a given ideal I and a given monomial order >
- For each $f \in I$, we have $L T_{>}(f)$
- Define $\left\langle L T_{>}(I)\right\rangle=\left\langle L T_{>}(f) \mid f \in I\right\rangle$
- That is $\left\langle L T_{>}(I)\right\rangle$ is the ideal generated by the leading terms of all elements of I according to the given monomial order.
- An example of a monomial ideal - an ideal generated by a collection of monomials - these have some nice properties

Dickson's Lemma

Theorem 10 (Dickson's Lemma)

Let M be a monomial ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. Then M is generated by a finite collection of monomials.

- Return to the monomial ideal $\langle L T(I)\rangle$ for a given I and a given monomial order.
- By Dickson, we know that $\langle L T(I)\rangle=\left\langle x^{\alpha(1)}, \ldots, x^{\alpha(t)}\right\rangle$.
- Every monomial in $\langle L T(I)\rangle$ is $L T(g)$ for some $g \in I$
- Consequence: There exist $g_{i} \in I$ such that $L T\left(g_{i}\right)=x^{\alpha(i)}$ for all $1 \leq i \leq t$.

Questions about varieties

Gröbner bases defined

- This leads to

Definition 11

Let I be a nonzero ideal and $>$ be a monomial order. A Gröbner basis for I with respect to $>$ is a finite set $G=\left\{g_{1}, \ldots, g_{t}\right\} \subset I$ such that $\left\langle L T_{>}(I)\right\rangle=\left\langle L T_{>}\left(g_{1}\right), \ldots, L T_{>}\left(g_{t}\right)\right\rangle$.

- Dickson’s Lemma \Rightarrow

Theorem 12

If I is a nonzero ideal and > is a monomial order, then Gröbner bases of I with respect to $>$ exist.

- Not unique, though, since generating sets for the monomial ideal $\langle L T(I)\rangle$ are not unique.

Consequences of Dickson, continued

Theorem 13

A Gröbner basis $G=\left\{g_{1}, \ldots, g_{t}\right\}$ for I generates I.

Proof.

Let $f \in I$ and divide by G - no terms end up in r, so we get
$f=a_{1} g_{1}+\cdots+a_{t} g_{t}$.
This also proves an unexpected "big theorem!"
Theorem 14 (Hilbert Basis Theorem)
Every ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated.

Main tool for computing Gröbner bases -S-polynomials

- The definition:

Definition 15

Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ and $>$ be a monomial order. The S-polynomial of f, g is

$$
S(f, g)=\frac{\operatorname{lcm}(L M(f), L M(g))}{L T(f)} f-\frac{\operatorname{lcm}(L M(f), L M(g))}{L T(g)} g
$$

- This is defined to make the leading terms cancel.

Idea of Buchberger algorithm

- When we find a "new" leading term in an S-polynomial, we will just append the new polynomial to our list of generators(!)
- Even if the S-polynomial itself does not have a "new" leading term, we can still try to "strip away" terms we already know by computing the remainder on division of the S-polynomial by the generators of the ideal we already have.
- Note that if $S\left(f_{i}, f_{j}\right)=a_{1} f_{1}+\cdots+a_{s} f_{s}+r$ then by definition $r \in I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ so if $r \neq 0$, then its leading term will be something we want to know(!)

Buchberger's algorithm - basic form

Input: $F=\left\{f _1, \ldots, f _s\right\}$
Output: G containing F
G := F
repeat

$$
\mathrm{G}^{\prime}:=\mathrm{G}
$$

for each pair $p<>q$ in G^{\prime} do
S := remainder of $S(p, q)$ on division by G^{\prime}
if S <> 0 then

$$
G=G \text { union }\{S\}
$$

until $G=G^{\prime}$

A technical result and the algorithm

- Buchberger's Criterion (proof is hard!) says that a finite basis G for / is a Gröbner basis of $/$ if and only if the remainder on division of $S\left(g_{i}, g_{j}\right)$ by G is zero for all $1 \leq i<j \leq t$.
- The process of adding non-zero S-polynomial remainders terminates (after a finite number of iterations) because the ideals of leading terms of the G form an ascending chain ($\mathrm{HBT} \Rightarrow \mathrm{ACC}$) and then we have a Gröbner basis.
- Many "tweaks" and improvements are also possible.

Reduced Gröbner bases - a test for $\mathbf{V}(I)=\emptyset$

- A GB $G=\left\{g_{1}, \ldots, g_{t}\right\}$ is reduced if the $L M_{>}\left(g_{i}\right)$ are a minimal basis of $\left\langle L T_{>}(I)\right\rangle$, and no term in g_{i} is divisible by $L T_{>}\left(g_{j}\right)$ for $j \neq i$ (analogous to row-reduced echelon form for linear equations!)
- Every ideal has reduced GB's wrt all monomial orders, and they are unique(!)
- For instance, $\{1\}$ is the unique reduced GB of $I=k\left[x_{1}, \ldots, x_{n}\right]$
- \Rightarrow if k alg. closed, then $\mathbf{V}(I)=\emptyset \Leftrightarrow\{1\}$ is the unique reduced GB of I. (Note: \Leftarrow is true for all k, so we now have a test for when $\mathbf{V}(I)=\emptyset(!))$

Elimination

- In elementary algebra, linear algebra, etc., a standard method for solving simultaneous equations in several variables is to form polynomial combinations that eliminate variables.
- Example: In the system

$$
\begin{aligned}
& 2 x-3 y=1 \\
& 4 x+5 y=3
\end{aligned}
$$

- second equation minus $2 \times$ first equation yields $11 y=1$, so $y=\frac{1}{11}$, and then $x=\frac{7}{11}$

Elimination ideals

- In our terms,

$$
(-2)(2 x-3 y-1)+(1)(4 x+5 y-3)=11 y-1
$$

is in $I=\langle 2 x-3 y-1,4 x+5 y-3\rangle$, and contains no x.

- Generalizing this,

Definition 16

Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. The ℓ th elimination ideal of I is

$$
I_{\ell}=I \cap k\left[x_{\ell+1}, \ldots, x_{n}\right]
$$

(in which the variables x_{1}, \ldots, x_{ℓ} have been eliminated).

- For example, $11 y-1 \in I_{1}=I \cap \mathbb{Q}[y]$.

Geometry of elimination

- If $I \subset k\left[x_{1}, \ldots, x_{n}\right]$, then we have the geometric object $\mathbf{V}(I) \subset k^{n}$
- If we then eliminate the first ℓ variables, we can ask, what is the corresponding variety $\mathbf{V}\left(I_{\ell}\right)$?
- Partial answer - it's very closely related to the projection of $\mathbf{V}(I)$ into the coordinate space $k^{n-\ell}$ of the variables $x_{\ell+1}, \ldots, x_{n}$.
- But a projection of a variety is not always a variety. (Example: project $\mathbf{V}(x y-1)$ onto the x-axis.) However over \mathbb{C} at least, $\mathbf{V}\left(I_{\ell}\right)$ is the smallest variety containing the projection of $\mathbf{V}(I)$.

Lex Gröbner bases and elimination

- A special property of lex order: Say the variables are ordered $x_{1}>x_{2}>\cdots>x_{n}$. If a monomial contains any positive power of x_{1}, then it is larger in lex order than all monomials that contain only x_{2}, \ldots, x_{n}. Similarly, any monomial that contains a positive power of x_{2} is larger than all monomials containing only x_{3}, \ldots, x_{n}, etc.
- Suppose I is an ideal for which $I_{\ell} \neq\{0\}$, and let $f \neq 0$ be an element of I_{ℓ}
- If G is a lex Gröbner basis for I, there must be some $g_{i} \in G$ such that $L T\left(g_{i}\right)$ divides $L T(f)$, hence $L T\left(g_{i}\right)$ contains only $x_{\ell+1}, \ldots, x_{n}$.
- But then the observation above shows $g_{i} \in I \cap k\left[x_{\ell+1}, \ldots, x_{n}\right]=I_{\ell}$

Elimination Theorem

This is the key idea in the proof of:
Theorem 17 (Elimination Theorem)
Let I be an ideal in $k\left[x_{1}, \ldots, x_{m}\right]$ and let G be a Gröbner basis for I with respect to lex order with $x_{1}>x_{2}>\cdots>x_{n}$. For all ℓ let $G_{\ell}=G \cap k\left[x_{\ell+1}, \ldots, x_{n}\right]$. Then G_{ℓ} is a Gröbner basis for the elimination ideal l_{ℓ}.
(Note: If $G_{\ell}=\emptyset$, this says $I_{\ell}=\{0\}$.)
In other words, lex Gröbner bases systematically eliminate variables "as much as possible"

A first example

- Let

$$
I=\left\langle x^{2} y+y^{2}+2, x y-3 y+1\right\rangle \subset \mathbb{Q}[x, y]
$$

- If we compute a (reduced) lex Gröbner basis for I with $x>y$, we get $G_{y}=$

$$
\left\{y^{3}+9 y^{2}-4 y+1, x-y^{2}-9 y+1\right\}
$$

- Note that the first polynomial depends only on y. It is the monic generator for $I_{1}=I \cap \mathbb{Q}[y]$.
- The second polynomial contains x too.

Example, continued

- Note the form of

$$
G_{y}=\left\{y^{3}+9 y^{2}-4 y+1, x-y^{2}-9 y+1\right\}
$$

- To find the points in $\mathbf{V}(I)=\mathbf{V}\left(x^{2} y+y^{2}+2, x y-3 y+1\right)$, we could solve the one-variable equation $y^{3}+9 y^{2}-4 y+1=0$ (numerically),
- Then, substitute the values into the other equation and determine x.
- There are three points in $\mathbf{V}(I)$ over \mathbb{C}, one with coordinates in \mathbb{R}, approx.

$$
(-3.10598633669341,-9.43517845033930)
$$

Example, continued

- If we reverse the order of the variables (i.e. look at lex order with $y>x$), then the reduced Gröbner basis changes
- Get $G_{x}=$

$$
\left\{x^{3}-5 x^{2}+12 x-19, y+x^{2}-2 x+6\right\}
$$

- Now, the first basis element generates $I \cap \mathbb{Q}[x]$, and the second contains x, y.
- This other basis could be used in the same way to determine $\mathbf{V}(I)$ (and would yield the same results!)

Finite varieties

- Note that in this last example, for lex order with $x>y$, the complement of $\left\langle L T_{>}(I)\right\rangle$ contains just $\left\{1, y, y^{2}\right\}$
- In general $\mathbf{V}(I)$ finite over an algebraically closed field \Leftrightarrow the complement of the monomials in $\left\langle L T_{>}(I)\right\rangle$ in the set of all monomials is a finite set for some (\Rightarrow all) monomial order(s).
- Moreover the cardinality of the complement gives an upper bound on $|\mathbf{V}(I)|$
- See the Finiteness Theorem in Chapter 5 of "IVA"

"Implicitization" = elimination

- Before, we briefly discussed how some varieties can be given in parametric form as well as by implicit equations
- The process of deriving implicit equations from a parametrization is called "implicitization"
- This can also be performed by means of elimination and lex Gröbner bases, when the coordinate functions are polynomial (or rational) functions
- Example: A parametric surface in \mathbb{R}^{3} :

$$
\begin{aligned}
& x=u^{2} \\
& y=u+v \\
& z=u-v^{2}
\end{aligned}
$$

Implicitization example, continued

- The ideal $I=\left\langle x-u^{2}, y-u-v, z-u+v^{2}\right\rangle$ defines the graph of the parametrization map (a subset of \mathbb{R}^{5}).
- Geometrically, we want to project that into the x, y, z-coordinate space to find the image of the parametrization map
- In algebraic terms, we want to order the variables with u, v bigger than x, y, z (for instance as $u>v>x>y>z$) and find the elimination ideal $I_{2}=I \cap \mathbb{R}[x, y, z]$.
- Computing a lex Gröbner basis we find 5 polynomials in all; only the last one contains no u, v terms:

$$
I_{2}=\left\langle-x+z^{2}+2 x z-4 y x+x^{2}+2 z y^{2}-2 x y^{2}+y^{4}\right\rangle
$$

- $\mathbf{V}\left(I_{2}\right)$ is a surface in \mathbb{R}^{3} that contains the image of the parametrization.

Implicitization example, continued

- The rest of the Gröbner basis is an "illustrated book" of exactly the way this parametrization works.
- For instance, the next three polynomials in the basis have x, y, z, v, but no u, so $I_{1}=I \cap \mathbb{R}[v, x, y, z]$ has lex Gröbner basis consisting of the generator for I_{2} above, plus
-

$$
\begin{aligned}
& (1+2 y) v+x-y+z-y^{2} \\
& (1+4 z+4 x) v+5 x-y+z+2 y x+y^{2}-6 z y-2 y^{3} \\
& v-y+z+v^{2}
\end{aligned}
$$

- Final polynomial is $u-y+v$

Interpreting the basis elements

- The polynomials $v-y+z+v^{2}$ and $u-y+v$ show that given $(x, y, z) \in \mathbf{V}\left(l_{2}\right)$, there are never more than 2 pairs (u, v) that yield that (x, y, z).
- The polynomials $(1+2 y) v+x-y+z-y^{2}$ and $(1+4 z+4 x) v+\cdots$ show that for "most" (x, y, z), there is only one pair (u, v).
- The only possible "different" points would come from places on $\mathrm{V}\left(l_{2}\right)$ where $1+2 y=0$ and $1+4 z+4 x=0$. Those equations define a straight line that lies on the surface $\mathbf{V}\left(I_{2}\right)$.
- Precise statement of all this comes from the Extension Theorem in Chapter 3 of "IVA"

Where next?

- GB's can be used to compute the Hilbert function of a (homogeneous) ideal (or its variety) - encodes degree, dimension, other invariants, etc. (Idea: comes from dimensions of degree-s pieces of the complement of $\langle L T(I)\rangle$ when the complement is not finite.) See Chapter 9 of "IVA"
- GB's are used in algorithms for primary decomposition and finding irreducible components of varieties.
- Many applications in areas of pure and applied math
- Much ongoing research in improving algorithms for computing GB's. See Chapter 10 in "IVA," 4th edition for something close to the "state of the art."
- Thanks for your attention!

