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SHIFTING THE FOUNDATIONS: 

DESCARTES'S TRANSFORMATION OF ANCIENT GEOMETRY 

BY A, G, MOLLAND, UNIVERSITY OF ABERDEEN 

SUMMARIES 

The aim of this paper is to analyse how the bases of 
Descartes's geometry differed from those of ancient 
geometry. Particular attention is paid to modes of 
specifying curves of which two types are distinguished 
- "Specification by genesis" and "Specification by 
property". For both Descartes and most of Greek 
geometry the former was fundamental, but Descartes 
diverged from ancient pure geometry by according an 
essential place to the imagination of mechanical 
instruments. As regards specification by property, 
Descartes's interpretation of the multiplication of 
(segments of) straight lines as giving rise to a 
straight line (segment), together with newer methods 
of articifical symbolism, led to more concise and 
suggestive modes of representation. Descartes's 
account of ancient procedures is historically very 
misleading, but it allowed him to introduce his own 
ideas more naturally. 

Ce mgmoire a pour but d'analyser comment les 
fondements de la y&omgtrie de Descartes diff&raient 
de ceux de la yBom&trie antique. Une attention 
particuliere est donnee aux modes de la specifi- 
cation de courbes, dont deux genres sont distinyuks 
- "sp&cification par yen&e" et "sp&ification par 
propri&tG". Pour Descartes et pour la plupart de 
la y&om&trie yrecque, c'&tait le premier genre 
qui etait fondamental, mais Descartes a divergg de 
la ggomgtrie pure des anciens en accordant a 
l'imayination d'instruments mecaniques un rale 
essentiel. En ce qui concerne la specification par 
propri&t$, l'interpretation avancge par Descartes de 
la multiplication de liynes droites (segments de 
telles lignes) comme produisant (un segment d') 
une liyne droite, ainsi que des m&thodes plus recentes 
de symbolisation artificielle, a abouti 'a des modes de 
repr&sentation plus concis et plus suggestifs. La des- 
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cription de Descartes des pro&dures antiques est, 
historiquement, tr&s trompeuse, mais elle lui a 
permis d'introduire ses idges propres d'une faqon 
plus naturelle. 

INTRODUCTION 

The mathematical work of Descartes is rather an enigma. It 
was small in volume, but had great subsequent influence. This 
suggests that it contained something radically new. But to 
characterise this exactly has not been easy. A conventional 
view has been to say that Descartes was inventor (or co-inventor) 
of "analytical geometry". But, for various reasons, this is not 
satisfactory. One difficulty is that there has been a terminolo- 
gical change, and the use of algebra in geometry has come to 
usurp the term "analytical geometry". But even at the beginning 
of the last century John Leslie [1832] could speak favourably 
of the purely geometrical analysis of the ancients [on which see 
Mahoney 19681 as opposed to the algebraic analysis of the moderns. 
Moreover, although they were willing to quarrel over other matters 
[see e.g. Mahoney 1973, 57-60, 170-1951, Descartes and Fermat, as 
Milhaud [1921, 136-1411 sagely noted, did not see any need to 
contest priority over a new form of geometry; and indeed many 
historians [see e.g. Coolidge 1963, 117-122; Schramm 1965, 89-97; 
Zeuthen 1966, 192-2151 have been able to emphasise how strong 
were the ancient roots of "analytical geometry". It may seem thaL 
these difficulties in characterisation could be eliminated by some 
tactic such as calling Descartes's achievement the "arithmetization 
of geometry", but, as Boyer [1959] has astutely argued, it can as 
appropriately be labelled the "geometrization of algebra". All 
this suggests the need to probe more deeply. 

My aim in this paper is to contribute towards a clarification 
of the nature of Descartes's work by isolating certain funda- 
mental differences between his geometry and that of Greek anti- 
vi ty , and so I shall put a strong emphasis on assessing him on 
the basis of what had gone before. My particular focus will be 
on problems associated with the specification of geometric curves, 
and this demands a few general remarks. The geometer communicates 
with words and other artificial symbols. His diagrams are in- 
tended as no more than an aid to comprehension. Thus if a 
geometer wishes to speak of a particular curve, he must be able 
to characterise it by means of verbal or other symbols. I shall 
call a unique characterisation of a curve (which may or may not 
be treated as a definition) a specification of the curve. No 
more than a finite number of symbols may be used, and we meet a 
type of continuum problem, for not every curve imagined as if 
drawn with a "free movement of the hand" is susceptible of such 
specification [l]. The modes of specification may be continually 
extended and modified, but the process can reach no final 
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completion. We must also remember that the existence of different 
modes of specification means that each mode determines its own 
range of specifiable curves. 

We may compare the situation with ratios. The ratio be- 
tween the diagonal of a square ant1 its side is specifiable in 
those very terms (provided we have reason for regarding it as 
invariant). In modern mathematical language the same ratio is 
specifiable as 42~1. In late medieval language it was specifiable 
as medietas duplae proportionis (half the double ratio) [Molland, 
1968, 117-1191. But it is not specifiable as the ratio between 
two natural numbers, and hence is called irrational. In Greek 
discussions of incommensurable quantities we meet the terms 
EAoyos and'&ppnTos, both of which may be translated as "inex- 
pressible", and in the thirteenth century both Campanus and 
Roger Bacon regarded the ratio between incommensurable quanti- 
ties as known "neither to us nor to nature" [Molland, 1968, 1161. 

It is relatively easy to lay down criteria for different 
kinds of specification of ratios, but with curves the situation 
is more complicated. We shall find in both Descartes and the 
ancients a primary distinction between different modes of :speci- 
fication. We may speak of this as the distinction between 
specification by property and specification by genesis. 
Specification by property lays down a property (usually a quan- 
titative property obeyed by all the points of the curve) which 
suffices to determine the curve. In Descartes this has character- 
istically the form of an equation. Specification by genesis 
determines a curve by saying how it is to be constructed. Speci- 
fications of this kind run up against the problem of what types 
of construction were regarded as acceptable at a given time. In 
what follows I shall consider the different types and roles of 
these two principal forms of specification in the geometry of 
Greek antiquity and in that of Descartes. 

I. ANTIQUITY 

We are faced with many difficulties in analysing the ancient 
Greek procedures. The number of writers involved is not small, 
and often because of the loss of their works we have to view them 
through the eyes of reporters, who may not always give an accurate 
presentation of individual nuances. We must therefore be on 
our guard against assuming a single monolithic view in all de- 
tails, even if there is a basic invariant core running through 
all the Greek writings. Further, the issues in which we are 
interested are little analysed in extant Greek writings. We 
have therefore mainly to attempt to identify what was implicitly 
assumed rather than to isolate explicit statements. The explicit 
statements that were made often came from those whose primary 
interest was more philosophical than mathematical, and we should 
not be surprised to find differences between what the mathematicians 
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actually did and what philosophers said was proper to their 
discipline. This fact has sometimes been obscured in the his- 
toriography of Greek mathematics, and its neglect is abetted by 
the fact that the early parts of Euclid’s Elements conform more 
nearly to certain philosophical dicta than do its own later parts, 
or other geometrical works. It is as if care were taken to show 
how the most elementary and basic parts of geometry could be 
made philosophically acceptable while leaving greater latitude to 
the mathematician to follow his own intuitions in the higher 
reaches. 

In our discussions of Greek geometry we shall have to be 
alive to the distinction between geometry and mechanics, and 
more particularly, as pertaining to constructions, the distinc- 
tion between the geometrical (yewp~~p~~&) and the instrumental 
(&.XVlK6S). Contrary to what seems often to be assumed, refer- 
ences to instruments (including ruler and compasses) did not form 
part of Greek pure geometry. But constructions were certainly 
used, and indeed, as we shall see, formed the basis for the 
definitions of most curves. Thus the allowable modes of cons- 
truction were a principal determining factor of what was admitted 
into Greek geometry. No explicit canonisation of admissible 
modes is extant, and so we shall have to try to identify the 
criteria from what was actually done. This will give us a 
fairly firm if not precisely delimited idea of what was allowable. 
We shall then consider some of the ways in which instrumental 
constructions infiltrated into geometrical contexts (although 
still not themselves being regarded as geometrical). We shall 
then return to pure geometry and focus on some of the roles of 
specification by property. 

Before considering in detail geometrical construction, we 
must touch on one problem that has sometimes seemed serious, but 
which it is important not to exaggerate. This is the question 
of the place of motion in geometry. The locus classicus for 
the difficulty is a short passage from Plato’s Republic [VII.9, 
526C-527B], where Socrates, after admitting the incidental uses 
of geometry in warfare, insisted that its higher a.im was the 
study of being rather than mere becoming. But this seemed to be 
belied by the geometers’ talking as if they were doing something, 
such as squaring, applying or adding. This may be read as 
casting some doubt upon the propriety of constructions in 
geometry. But at that time, at least, constructions were neces- 
sary for geometry, and even if ontologically its objects were 
exempt from becoming, some element of becoming was necessary for 
geometric epistemology. Thus apparently Speusippus (Plato’s 
nephew) and others resolved the dilemma by regarding constructions 
as processes of understanding “taking eternal things as if they 
were in the process of coming to be” [Proclus, 1873, 77-78; 
1948, 69-70; cf. Aristotle, me coelo 1.10, 279b32-280a12 and 
Becker 1927, 1981 and much later in time Proclus [1873, 78-79; 
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1948, 701 spoke of human ideas shaping intelligible matter in 
the understanding [ 21. 

Nevertheless the emphasis on the immovable nature of 
geometrical objects seems to have had some effect upon geometry, 
and in the early part of the Elements Euclid seems wary of using 
ideas of motion [Euclid 1956, 1, 224-228; Mugler 1948, 58-591. 
This could square with Proclus’s assertion that Euclid was a 
Platonist [Proclus 1873, 68; 1948, 61-621, but perhaps more 
plausibly it should be attributed to his borrowing from earlier 
sets of Elements. In the first book of Euclid’s Elements the 
straight line and the circle are defined by property rather than 
by genesis [Euclid 1956, 1, 1531. “A straight line is a line 
which lies evenly with the points on itself.” “A circle is a plane 
figure contained by one line such that all the straight lines 
falling upon it from one point among those lying within the figure 
are equal to one another.” But Euclid has to supplement these 
definitions by postulates laying down when straight lines and 
circles may be constructed, or, in Zeuthen’s [1902, 98-1001 
interpretation, when they exist. “Let the following be postu- 
lated: To draw a straight line from any point to any point. 
To produce a finite straight line continuously in a straight 
line. To describe a circle with any centre and distance” [Euclid 
1956, 1, 1541. These definitely seem to involve some kind of 
motion, and Proclus [1873, 185-187; 1948, 162-1641 grasps the 
nettle firmly and grounds them in motions in the imagination. 
There were also in Antiquity definitions of the straight line 
and circle that explicitly appealed to motion. The circle was 
defined in terms of the rotation of a straight line about one of 
its extremities and the straight line as that which remained 
fixed on rotation when two points remained fixed [Euclid 1956, 
1, 184, 1681. Hints of the latter definition can even be found 
in Plato’s Republic [Mugler 1948, 26-271. 

Despite the prominence of definition by property in the 
first book of Euclid’s Elements, genetic definition was elsewhere 
the norm [3]. This applies even to Euclid, for in the eleventh 
book of the Elements he defines the sphere, cone and cylinder 
by rotations of, respectively, a semicircle, a triangle and a 
rectangle [Euclid 1956, 3, 261-2621. Outside Euclid’s Elements, 
spires arose from the rotation of a circle about an axis in its 
plane but not passing through its centre [Proclus 1873, 119; 
1948, 1081. Conic sections, as the name implies, were regularly 
defined as the sections of cones by planes, and Perseus investi- 
gated the figures arising from sections of spires [Proclus 1873, 
111-112, 119; 1948, 101-102, 1081. Archimedes [1910-1915, 1, 
246-255; n.d. 99-1021 defined conoids and spheroids by rotating 
conic sections about their diameters. Archytas produced a 
“certain curve” from the inter-section of the circumference of 
a revolving semicircle with the surface of a half cylinder 
[Eutocius 1915, 85-89; Thomas 1957, 1, 284-2871. 
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In the above instances the rotations involved were about an 
axis s Apollonius [1891-93, 1, 6-7; Thomas 1957, 2, 284-286; 
cf. Apollonius 1961, l] gave a more general definition of the 
cone (to include oblique cones) in terms of the rotation of a 
straight line which passes through a fixed point and moves around 
the circumference of a circle (whose plane does not include the 
point). Serenus [1896, l-5; 1969, l-21 was careful by analogy to 
extend the definition of the cylinder to include oblique 
cylinders. He used two equal and parallel circles and had in 
each rotating parallel diameters. The line joining corresponding 
ends of the diameters produced the surface of the cylinder. 

In a trivial sense Serenus’s definition of the cylinder 
involved two simultaneous motions that had to be correlated in 
some way. Other definitions involved simultaneous motions in a 
non-trivial sense. Later, as we shall see, Descartes would 
reject such curves from geometry, but the ancients seem to have 
had no compunction about admitting them. The spiral was of this 
kind, being defined by Archimedes [1910-15, 2, 44-45; n.d. 165; 
Thomas 1957, 2, 182-1831 in terms of the uniform motion of a 
point along a straight line, which itself was uniformly rotating. 
The definition of the cylindrical helix given by Proclus [1873, 
105; 1948, 951 is from the uniform motion of a point along a 
straight line that is moving round the surface of a cylinder. 
Eudoxus’s generation of the hippopede [Thomas 1957, 1, 412-4151 
had involved the uniform rotations of two spheres which had to 
complete their motions in the same time. 

The quadratrixof Hippias has similar features, but at least 
for Pappus was the cause of some difficulties. The generation 
given by Pappus [1965, 252-253; 1933, 192; Thomas 1957, 1, 336- 
3391 was of this kind. In a square ABCD, B'C' moves uniformly 
from BC to AD, while remaining parallel to BC. In the same 
time AE revolves uniformly about A from AB to AD. Both motions 
are completed in the same time. Then the intersection of B'C' 
and AE traces out the quadratrix. This curve had been applied to 
the squaring of the circle; but as Sporus [Pappus 1965, 252-255; 
1933, 193-194; Thomas 1957, 1, 338-3411 had pointed out, a 
petitio principii was involved, for how was the quadratrix to be 
constructed without knowledge of the ratio of the radius of the 
circle to a quarter of its circumference? Pappus expounded with 
approval Sporus’s objections, but he himself [1965, 254-255; 258- 
259; 1933, 194, 1971 had another difficulty with the curve, namely 
the extent to which its genesis was mechanical (he used the adjec- 
tive r.qpvl~& rather than 6pyav1~6s). What he meant by this is 
not transparently clear, but he seemed happier when he had analysed 
the curve “by means of the loci on surfaces” in terms of first 
the cylindrical helix and then the Archimedean spiral [Pappus 
1965, 258-265; 1933, 197-2011. 

The whole business of the “loci on surfaces” is rather 
obscure [cf. Euclid 1956, 1, 15-161, and the available evidence 
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is scanty. We must therefore beware of drawing too many infer- 
ences from Pappus's procedures. It seems clear that Pappus re- 
garded the spiral and the cylindrical helix as having a firmer 
claim to the status of being geometrical than the quadratrix, 
which could however receive authentication by being derived from 
them. The constructions used in the derivation must also have 
been regarded as having a fairly firm geometrical status [4]. 
The first derivation is from a cylindrical helix. A plectoidal 
[cf. Pappus 1933, 198, n.61 surface arises from the motion along 
the helix of a perpendicular from it to the axis of the cylinder. 
The section of this surface by a plane that can be determined by 
a property of the helix produces a curve, and the orthogonal pro- 
jection of this curve onto the base of the cylinder produces the 
quadratrix [s]. The production of the quadratrix from the spiral 
is more complicated. A "cylindroidal surface" is formed perpen- 
dicular to the plane of the spiral and passing through the spiral. 
The intersection of this with a cone gives a curved line. A 
"plectoidal surface" is formed by the motion ofa perpendicular 
from this line to the straight line through the origin of ,the 
spiral and perpendicular to its plane. The intersection of this 
surface with a plane (determined by the spiral and inclined to 
its plane at half a right angle) gives rise to another curved 
line, and the orthogonal projection of this line onto the plane 
of the spiral gives the quadratrix. 

So far as I know, no ancient writer attempted to give a 
general account of what modes of construction were acceptable 
in geometry, and it would probably have been impossible to pro- 
duce a universally agreed codification of the geometer's intui- 
tion. But clearly there had to be limits, since otherwise, for 
instance, a very simple construction could be given for the 
rectification of the circle. (The imagined motion could be a 
rolling of a circle.) Our analysis has suggested that restrictions 
were made to certain simple motions, and the dominant ideas seem 
to have been those of rotation and of constructing straight lines 
and planes. The passages from Pappus that we have just examined 
suggest that in the higher reaches of geometry there may have 
been standard procedures of constructing cylindroids (generalised 
"cylinders") from plane curves and "plectoids" from non-planar 
curves. 

Pappus himself gave a rudimentary classification of curves, 
or more strictly of problems, in terms of the lines used for their 
solution. This classification, which Pappus attributes to much 
earlier geometers, is famous and was to be given a prominent place 
by Descartes. It is in terms of the geneses of the lines used, 
and the passage that Pappus annexes will serve to introduce us 
to the place of instrumental constructions in Greek geometrical 
works: 

The ancients held that there were three genera of geometrical 
problems: some were called plane, some solid, and some linear. 
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Those that can be solved with straight lines and circumferences 
of circles are reasonably called plane, for the lines by which 
these problems are solved have their genesis in a plane. Problems 
that are solved by the use in their discovery of one or more sec- 
tions of a cone are called solid, for in their construction it 
is necessary to use surfaces of solid figures, namely conic sur- 
faces. There yet remains the third genus which is called linear, 
for lines other than those mentioned are used in the construction, 
which have a varied and more intricate genesis, such as the spirals, 
the quadratrixes, the conchoids and the cissoids, which have 
many marvellous properties. 

As there is this difference between problems, the ancient 
geometers did not construct the aforementioned problem of the 
two straight lines, which is solid by nature, following geomet- 
rical reasoning, because it was not easy to draw the sections of 
the cone in a plane, but by using instruments they brought it to 
a manual construction and fit preparation, as is seen in the 
Mesolabe of Eratosthenes and the Mechanics of Philo and Hero. 
[Pappus 1965, 54-57; 1933, 38-39; cf. 1965, 270-271; 1933, ZOl- 
2081. 

From this passage it is clear that Pappus regarded instru- 
mental solutions as being something of a concession to human 
weakness, or at least to human practical needs. Instrumental 
constructions were not properly geometrical, but they could 
indicate how a solution was physically to be performed. The 
imagination of idealised instruments can give constructions as 
exact as those of pure geometry, but they did not fit into the 
canons of Greek geometry, and were strictly regarded as part of 
mechanics. 

In two famous passages of Plutarch we are shown Plato as 
fulminating against the use of instrumental constructions in 
geometry [Quaestiones Conviviales VIII. 2.1 in 1961, 120-123; 
Vita Marcelli XIV. 5-6 in 1914-26, 4, 470-4731. Although, as 
van der Waerden [n.d. 161-1651 has suggested [6], these passages 
may derive not from Plato but from a dialogue by Eratosthenes in 
which Plato was a character, we may be sure that Plato would have 
wished a definite distinction between geometry and mechanics; and, 
from wherever they derive, the passages bear witness to the re- 
cognition of such a separation. Another explicit reference to 
the distinction, with hints of the practical man’s need of 
instrumental constructions, may be found in a purported letter 
of Eratosthenes to Ptolemy Euergetes. The letter (like the 
other references we have so far considered) concerns the dupli- 
cation of the cube, which was reduced to the problem of finding 
two mean proportionals between two straight lines. After review- 
ing the history of the problem, the writer continued [Eutocius 
1915, 90-91; Thomas, 1957, 1, 260-261; cf. von Wilamowitz- 
Moellendorff 18941: “It turned out that they all performed it 
demonstratively (~ITOGEIKTIKGS), but they could not do it manually 
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and turn it to use, except to a small extent Menaechmus, and 
that with difficulty. An easy instrumental solution was, however, 
found by us, by means of which we shall find, not only two means 
to the given straight lines, but as many as may be enjoined." 

It is in the realm of solid, and to a certain extent linear, 
problems that the distinction is most apparent, for in these cases 
there was likely to be considerable divergence between the geo- 
metrical and instrumental procedures. In plane problems the dis- 
tinction certainly existed, but for later historians it has some- 
times been obscured by the tantalisingly close analogy existing 
between Euclid's first three postulates and the operations that 
can be performed with a straight edge and compasses. But even 
here, as de Morgan [1849, 6; cf. Euclid, 1956, 1, 2461 empha- 
sised, the analogy is not exact, for, in his words, the postulates 
"do not allow a circle to be drawn with a compass-carried dis- 
tance; suppose the compasses to close of themselves the moment 
they cease to touch the paper." Euclid's propositions 2 and 3 
of the first book are necessary to make the analogy complete. 

We may glean further understanding of how even ruler-and- 
compass constructions were regarded as instrumental rather than 
properly geometrical from Book VIII of Pappus's Collectio. This 
is devoted to mechanics, and Pappus included a section on ins- 
trumental problems, which he clearly specified as belonging to 
mechanics. Some of these problems require only a straight edge 
and compasses, although Pappus does not explicitly specify the 
instruments. In association with two of them we have some rather 
enigmatic remarks on the status of instrumental problems: 

The so-called instrumental problems in mechanics [are those 
which] are deprived of geometrical authorities, such as those 
described by one interval and that of the cylinder with both bases 
multilated, which is put forward by the architects [1965, 1072- 
75; 1933, 8451. 

The [problems] among those which are especially called 
instrumental are also useful and most of all when, led to some- 
thing easy by analysis, they can escape the proportionate trial 
(ETpa) [1965, 1096-97; 1933, 8601. 

The first of these passages is followed by the problems of 
finding the diameter of a cylinder with two multilated bases, 
which Pappus reduces to that of constructing the minor axis of 
the ellipse that would pass through five given points. No ins- 
truments other than the straight edge and compasses are neces- 
sary, though the compasses have to be used on the surface of the 
cylinder. The second passage is followed by a problem in which 
it is demanded that seven regular hexagons be inscribed in a 
given circle. Pappus reduces this by analysis to the problem 
of constructing a certain triangle. He makes the problem more 
complicated than it need be, but no instruments other than 
straight edge and compasses are required. 

It is not easy to infer much from Pappus's obscure general 
statements, and possibly he was a little confused himself. 
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However, it seems clear that he regarded instrumental solutions 
to geometrical problems as lacking in geometrical rigour, so 
that in the last resort they could only be justified on the basis 
of whether they worked in practice. They did not themselves fit 
into the strict deductive system of geometry, but often geometri- 
cal argumentation could produce conviction that they worked. 
Pappus’s main difficulty in characterising their status may well 
have come from a problem of specifying in general terms the 
relations between geometry and mechanics. 

We may derive even clearer evidence of how constructions 
with simple, as well as with complicated, instruments were re- 
garded as mechanical from a passage of Book VIII of Pappus’s 
Collectio that is only extant in Arabic. When reviewing Hultsch’s 
edition of the Collectio, M. Cantor [1879; cf. 1894-1908, 1, 
4211 suggested that the phrase “those described by one interval” 
in the first of the passages that we have just quoted referred 
to problems in which the compasses could only be opened to one 
interval. This surmise found little favour with W. M. Kutta in 
his historical study of fixed compass problems [1898, 72-741, 
but the recently discovered Arabic version of Book VIII favours 
Cantor’s view, for it includes a group of problems in which res- 
trictions are placed on the use of the compasses [Jackson 1970, 
63-73, A43-A51; cf. 19721. There are reasonable grounds for 
attributing the passage to Pappus, or at least for assuming 
that the writer put the same interpretation on “described by one 
interval” as Pappus. The explicit restriction is that there “is 
a given distance which must not be exceeded when we draw circles”, 
and the author later rephrased this in more definitely instrumen- 
tal terms by saying that “we have only one small pair of compas- 
ses with which to work”. But in fact, except for one problem, 
only one arbitrary opening of the compasses is required, and the 
exception would be easy to obviate. The author seems to have 
realised this, for at times he announced that only one distance 
had been used. 

The broad distinction between geometrical and instrumental 
procedures is clear, but puzzles can arise in some cases, 
mainly it seems through lack of extant evidence. In particular 
we must consider the cases of the conchoid and the cissoid. It 
is clear that Pappus [1965, 54-55, 270-271; 1933, 38-39, 207- 
208] and Proclus [1873, 111, 128, 356; 1948, 103, 116, 3041 had 
few qualms about accepting these as properly geometrical, and 
yet in both cases the accounts that survive are tinged with the 
instrumental. The conchoid was the invention of Nicomedes, but 
his original work is lost and we have to rely on reports by 
Pappus and by Eutocius. Pappus’s account 11965, 242-245; 1933, 
185-186; Thomas 1957, 1, 298-3011 of its generation is in the 
following manner [7]. AB is a straight line and E a point not 
on it. Another straight line CD moves in such a way that D is 
always on AB (i.e. CD is constant) and CD produced always passes 
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through E. The point c traces out the conchoid. Pappus [1965, 
244-247; 1933, 187; Thomas 1957, 300-3011 remarks that Nicomedes 
showed that the curve could be constructed instrumentally, and 
Eutocius [1915, 98-1011 gives only an instrumental construction. 
This makes use of slotted rulers and pegs, and parallels exactly 
the genesis given by Pappus. Thus it seems that in this case 
Pappus may have regarded this analogue of an instrumental cons- 
truction as geometrical even if it fitted rather loosely into the 
more usual criteria [8]. 

The case of the cissoid is less problematic, for Diocles’ 
construction as reported by Eutocius [1915, 67-71; Thomas 1957, 
1, 270-2791 is solely instrumental and does not even effect a 
complete genesis of the curve [9]. Let AB and CD be perpendic- 
ular diameters of a circle. Mark off equal arcs EB, BZ, with E 
on the side of C and Z on the side of D. Drop the perpendicular 
ZH onto CD. The intersection of ED and ZH is a point of the 
required curve. “If in this way more parallels are drawn continu 
ally between B, D, and arcs equal to the arcs cut off between 
them and B are marked off from B in the direction of C, and 
straight lines are drawn from D to the points so obtained..., the 
parallels between B and D will be cut in certain points.... 
Joining these points with straight lines by applying a ruler we 
shall describe in the circle a certain curve.” Both the -refer- 
ence to the ruler and the “construction” of the curve by joining 
points with straight lines make clear the instrumental or.ienta- 
tion, which in any case would be expected in a work entitled, 
as Diocles’s was, On burning mirrors. Diocles in fact has only 
given a method of constructing an arbitrary number of points on 
the curve and not a method of constructing the curve itself. We 
may suspect that a more acceptable geometrical construction (per- 
haps using two simultaneous motions) was discovered later, for 
Proclus [1873, 113; 1948, 1031 reports that Geminus taught the 
genesis of cissoids as also of spirals and conchoids [lo], 
but unfortunately we do not know his method. 

Diocles’s “construction” of the cissoid is easily trans- 
latable as laying down a property that each point of the (curve 
must obey. To this extent we may regard it as leading to a 
specification by property of the cissoid. But, as we have seen, 
such specifications were not usually regarded as definitions, 
and would in any case need to be supplemented by an existence 
postulate or proof. Nevertheless specifications by prope’rty did 
play an important part in Greek geometrical methods, and we must 
now return definitely to the realms of pure geometry in o-rder 
to explore some of their roles. We shall first see how certain 
essential properties were referred to curves, and then co:nsider 
the class of locus problems and theorems. 

When discussing parallel lines. Proclus referred to essen- 
tial properties belonging to them as such (such as the equality 
of the alternate angles when the parallels were cut by a straight 
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line). Such properties were unique to parallel lines and con- 
vertible with their definition. He added [1873, 356; 1948, 3041: 

In this way also other mathematicians were accustomed to 
discourse on lines, giving the property (ai?~n~wl~-cx) of each 
species. For Apollonius showed for each of the conic lines what 
its property was, and Nicomedes likewise for the conchoids, 
Hippias for the quadratrices, and Perseus for the spirits. For 
after the genesis, the apprehension of the essential [property] 
belonging [to it] as such [ll] differentiates the species con- 
structed from all others. 
The exampleof conicsections mayshowushowimportantthe establish- 
mentofsuch apropertywas, foritwould clearlybeverytedious tohave 
toreferback totheoriginalconeforeachtheorem. Thus earlyinhis 
work Apollonius [1891-93, 1, 36-53; 1961, 8-121 produces particular 
planimetricproperties for each ofthethree species of conic sections. 
The simplest case is the parabola. Suppose PM is a diameter 
(with P on the parabola) and PL the corresponding latus rectum. 
Then for any ordinate QV to the diameter PM, the square on QV 
is eclual to the rectangle formed from PV and PL. Later Apollonius 
[1891-93, 1, 158-165; 1961, 42-431 will show essentially how 
any curve with such a property is a parabola. Thus this speci- 
fication by property is unique to the parabola. We may see from 
the form of this planimetric property (and the corresponding ones 
for the ellipse and the hyperbola) how easy it is to read coordi- 
nate geometry back into ancient works, and this part of Descartes’s 
method certainly had firm ancient roots. 

Related to the establishment of such properties was the class 
of locus problems and theorems, although in this case the empha- 
sis was on arguing from the property to the curve. Proclus [1873, 
394; 1948, 3371 defines a locus (r6nos) succinctly as “a position 
of a line or a surface producing one and the same property.” We 
frequently meet with propositions of the form that, when certain 
properties of a point or line are given, that point or line is 
uniquely given in position [12]. But there were also problems 
without a unique solution of this kind, where, for instance, 
the required point could lie anywhere on a certain line, so 
that the line was the place or locus of the point, and it was 
to cases of this kind that the term “locus” was most frequently 
applied. Pappus, who had many relevant and no longer extant 
sources available to him, and is here drawing at least partially 
on Apollonius’s Plane loci, divides loci into three classes 
[1965, 660-663; 1933, 495-4961. Some are ~(JEKTIKO~, when a 
point is the locus of a point, a line of a line, or a surface of 
a surface. Other loci are ~IE~O~IKO~, when a line is the locus 
of a point, or a surface of a line, or a solid of a surface. 
Finally others are &V~~T~OC#IIKO~, when a surface is the locus of 
a point, or a solid of a line. The mOSt Common fOrIn Was 61E<061KO< 

loci of points. Pappus subdivided these into plane, solid and 
linear loci, in a way similar to that in which he had classified 
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prob 1 ems . Plane loci comprise straight lines and circles; solid 
loci comprise conic sections; all other loci are linear [13]. 

A complete locus theorem must include a proof that the point 
will lie on the given locus and also a proof that any point on 
the locus satisfies the given condition. We find both proofs in 
a proposition that Eutocius [1893, 180-185; cf. Heath 1949, 181- 
1881 is apparently copying from Apollonius’s Plane loci, to the 
effect that if two points are given and also the ratio between 
two unequal straight lines, then the locus of a point whose 
distances from the two given points is in the given ratio is a 
circle. Pappus [1965, 662-671; 1933, 496-5011 gives an account 
of the contents of this work of Apollonius, and it is possible 
to see from this some rationale (besides that of their genesis) 
for treating the circle and straight line as forming a single 
class, for one general proposition in particular can be looked 
upon as dealing with transformations of circles or straight lines 
into circles or straight lines [Steele 1936, 358-3601. But in 
general we know very little of ancient locus procedures, and the 
reports on Aristaeus’s Solid loci and Euclid’s Loci on surfaces 
are even more sketchy than those on Apollonius’s Plane loci. It 
is nevertheless clear that such inferences “from property to 
place” were an important part of Greek geometrical activity. 

Let us now summarise. Many may have argued that geometrical 
definition should be by property rather than by genesis (for 
example, Eutocius [1893, 186-1871 did not regard Apollonius’s 
genetic definition of the cone as a definition), but in fact, 
despite the privileged position of definition by property in 
the first book of Euclid’s Elements, genetic definitions of in- 
composite lines and surfaces tended to be the general rule. 
These, together with the constructions regularly used in geometry, 
demanded the imagination of certain simple motions. There seems 
to have been little explicit discussion of what motions were 
allowable, but rotations (understood in a broad sense) and the 
construction of straight lines and planes predominated. There was 
no ban on the use of two simultaneous motions. 

Although genetic definitions were usually regarded as more 
basic, there was considerable interest in properties that could 
give a unique specification of a curve or surface, and usually 
these were in the form of some quantitative relation that had 
to be obeyed by all the points of the curve or surface. Par the 
conic sections much use was made of fundamental planimetric pro- 
perties, and the class of locus theorems dealt with what curves 
answered to what properties of points. Through all this, classi- 
fication of curves was based on the mode of their genesis rather 
than on any properties that they possessed. 

In pure theoretical geometry there was no mention of 
instruments. But practically-oriented solutions to geometrical 
problems could be given by specifying how certain instruments 
were to be employed. These were regarded as lacking some of the 
rigour of pure geometry, and in fact as belonging to mechanics 
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rather than to geometry. Frequently both geometrical and instru- 
mental solutions could be given to the same problem, and compilers 
often placed them next to each other. The distinction is usually 
quite clear, but a cursory reading could misconstrue it. And 
in fact it has often been blurred or misinterpreted, and in 
particular by Descartes. 

II. DESCARTES 

We may now confront Descartes’s version of much of what we 
have treated. We may best start with an extended quotation from 
the beginning of Book II of the G$om6trie, which is entitled 
On the Nature of Curved Lines [14]: 

The ancients have well remarked that, among the problems of 
geometry, some are plane, others solid and others linear, that 
is to say, that some can be constructed by tracing only straight 
lines and circles, while others can only be constructed by using, 
at the least, some conic section, and finally others only by 
using some other more compounded line. But I am surprised that 
they did not beyond this distinguish different degrees among 
these more compounded lines, nor can I understand why they 
named them mechanical (mechaniques) rather than geometrical. 
For in order to say that this was because there is need to use 
some machine for describing them, it would be necessary for the 
same reason to reject circles and straight lines, seeing that 
one only describes these on paper with compasses and a ruler, 
which one can also name machines. No more is it because the 
instruments used for tracing them, being more compounded than the 
ruler and compasses, cannot be so accurate (si iustes); for for 
that reason it would be necessary to reject them from mechanics, 
where the accuracy of works that issue from the hand is more desired 
than in geometry, where it is only accuracy of reasoning that 
is sought, which without doubt can be as perfect regarding these 
lines as regarding the others. Neither will I say that it was 
because they did not wish to increase the number of their demands, 
and were content to be granted that they could join two given 
points by a straight line and describe a circle with a given 
centre which would pass through a given point: for they made no 
scruple about further supposing, in order to treat the conic 
sections, that one could cut each given cone by a given plane. 
And, in order to trace all the curved lines that I intend to 
introduce here, there is only need to suppose that two or more 
lines can be moved, one by another (l’une par l’autre) and that 
their intersections mark out other [lines], and this does not 
seem to me at all more difficult. It is true that they did not 
entirely receive the conic sections into their geometry, and I 
do not wish to undertake to change names that have been approved 
by usage, but it is, it seems to me, very clear that, taking 
as one does for geometrical that which is precise and exact 
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(precis 6 exact) and for mechanical that which is not, and con- 
sidering geometry as a science that teaches generally how to 
know the measures of all bodies, one must no more exclude the 
more compounded lines than the more simple, provided that one can 
imagine them to be described by a continuous movement or by 
several which follow one another and of which the later are 
entirely determined (entierement regl&) by those which precede. 
For by these means one can always have an exact knowledge of 
their measure. But perhaps what prevented the ancient geometers 
from admitting [curves] that were more compounded than the conic 
sections was that the first that they considered happened to be 
(lit. having by accident been) the spiral, the quadratrix and 
such-like, which truly belong only to mechanics and are not of 
the number of those that I think must be received here, because 
one imagines them described by two separate movements, which have 
no ratio between them that one can measure exactly, although 
they [the geometers] afterwards examined the conchoid, the 
cissoid, and some few others which are among those [to be 
received], but because they perhaps did not sufficiently remark 
their properties, they made no more of them than the first. Or 
perhaps it was that, recognising that they still knew little 
regarding the conic sections, and that there even remained much 
they they did not know regarding what could be done with the 
ruler and compasses, they feared having to enter upon a more dif- 
ficult matter. 

The fundamental error in this passage is the misconstrual 
of the ancient distinction between geometrical and instrumental 
constructions. This leads Descartes to hold that curves higher 
than the conic sections were regarded as mechanical rather than 
geometrical, and he compounds this error by suggesting (very 
oddly for someone who knew Apollonius's work) that even t.he conic 
sections were not fully accepted. Having produced this analysis, 
Descartes sets himself the task of making it intelligible, 
and produces further misleading statements. His first ex- 
planation suggests a ruler-and-compasses restriction in a.ncient 
works, and, although he rejects this as (in his own terms) mis- 
guided, the myth of this restriction has plagued much subse- 
quent historiography [cf. Steele 19361. He then tries to have 
Greek geometry determined by the postulates of the first book of 
Euclid's Elements, but here he has to admit that constructions of 
planes were used for the conic sections (even if he is grudging 
about admitting the place of these figures in Greek geometry). 
His third attempted explanation was that the spiral and quadra- 
trix, which were not geometrical, were discovered first and only 
afterwards the acceptable conchoid and cissoid. But, as we 
have seen, there was no ancient compunction about admitting the 
spiral and little about the quadratrix, and there could well have 
been more doubt about the geneses of the conchoid and cissoid. 
His fourth attempt was to suggest that the ancient geometers 
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wished to complete the lower reaches of geometry before moving 
on to the higher. But this does not in fact address itself to 
the same pseudo-problem, but only to the question of why more 
time was not spent on higher curves. 

Descartes’s historical errors are blatant, but his faulty 
exegeses allow him to introduce more naturally his own basis 
for geometry. This arises from the imagination of various arti- 
culated instruments in which the movements of all the parts 
are completely determined by the movement of one of them, and 
where the intersections of parts trace out curves [AT, 6, 391- 
395; 1954, 45-471. The parts may all be straight lines or rulers, 
or one of them may be a figure already produced by a continuous 
movement, such as a parabola or a hyperbola. All such curves are 
to be received into geometry and Descartes [AT, 6, 392; 1954, 
46-491 writes of those produced by one instrument that “I do 
not see what can prevent one from conceiving the description of 
the first [curve] as clearly and as distinctly as that of the 
circle or at least as that of the conic sections, nor what can 
prevent one from conceiving as well as one can the first the 
second, the third and all the others that one can describe, nor 
consequently why one should not receive them all in the same way 
for use in the speculations of geometry.” On the other hand 
curves such as the spiral and the quadratrix, which arise from 
two simultaneous motions are to be rejected from geometry and 
regarded as only mechanical. 

We shall have to examine later how Descartes relates this 
criterion for the acceptability of curves to the possibility 
of measure, but first we should note how the criterion goes right 
back to Descartes’s earliest researches in mathematics. In the 
Discours de la M&bode he [AT, 6, 7; 1955, 1, 851 tells us how 
during his education he delighted most in mathematics, but at 
the time believed that “it was of service only in the mechanical 
arts”. In the Cogitationes Privatae we see signs of his occu- 
pations with various practical problems of mathematics, including 
the invention of articulated instruments or compasses as they 
were generally called, for tracing curves and solving problems 
[AT, 10, 232-235, 238-2421. In a famous letter to Beeckman on 
March 26th, 1619 [AT, 10, 154-1601 Descartes indicates how such 
generalised compasses were taking on a fundamental theoretical 
position in his mathematical thought. He speaks of how he has 
invented compasses for the division of angles into equal parts 
and for the solution of cubic equations. But such discoveries 
were suggesting to him a whole new programme for mathematical 
advance [AT, 10, 156-1571: 

And certainly, to disclose openly to you what I am under- 
taking, I wish to propound not an ars brevis of Lull but a 
completely new science, by which can be solved generally all 
questions that can be put forward in any genus of quantity, 
continuous as well as discrete. But each according to its nature. 
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For, as in arithmetic some questions are solved by rational 
numbers, others only by surd numbers, and lastly others can be 
imagined but not solved, so I hope to demonstrate that in 
continuous quantity some problems can be solved with only 
straight lines and circular ones, others can only be solved by 
other curved lines, but such as arise from a single motion (sed 
quae ex unico motu oriuntur), and so can be described (duci 
possunt) by new compasses, which I do not regard as less certain 
and geometrical than the common ones by which circles are des- 
cribed, and finally other [problems] can only be solved by curved 
lines generated from different motions which are not subordinated 
to one another, which lines are certainly only imaginary: such 
is the common enough (satis vulgata) quadratrix. And I judge 
that nothing can be imagined that cannot at least be solved by 
such lines. But I hope that I shall demonstrate which questions 
can be solved in this or that way and not the other, so that 
scarcely anything in geometry will remain to be discovered. 

In this way Descartes had formulated a programme for 
geometry from whichhedid not essentially diverge. But i.n the 
Ggometrie we find it far more definitely related to speci.fication 
by property. In the long passage that we quoted above we saw 
how Descartes regarded the distinguishing characteristic of 
geometry as opposed to mechanics as being that the geometrical 
was “precise and exact”. Moreover, geometry was “a science that 
teaches generally how to know the measures of all bodies”. 
Descartes also held in that passage that one could have an 
exact knowledge of the measure of curves that had been generated 
in accord with his criterion of one or more determined movements. 
Descartes’s interpretation of what was meant by an exact knowledge 
of the measure of a curve may have undergone some development, 
but in the Geometric he clearly explicates it in terms of equations 
“In order to understand together all those [curves] which are in 
nature and to distinguish them by order into certain genera I 
know nothing better than to say that all the points of those 
which one can name geometric, that is to say which fall under 
some precise and exact measure have necessarily some rela.tion 
(quelque rapport) to all the points of a straight line, which 
can be expressed by some equation, and by one [equation] for 
them all” [AT, 6, 392; 1954, 491. Curves are then classified 
according to the degree of their equations. 

At the basis of Descartes’s representation of curves by 
equations lies the close analogy that he makes between operations 
on straight lines (or, in later terminology, line segments) and 
operations on numbers. In particular, by the assumption of an 
arbitrarily chosen unit line, he is able to interpret the multi- 
plication of two straight lines as given rise to a third straight 
line rather than to a rectangle. This step was of fundamental 
importance in making easier the representation of curves in alge- 
brai c terms. In setting up an equation for a curve Descartes 
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[see e.g. AT. 6, 393-394, 1954, 49-541 chose a straight line, say 
AB, and a fixed point on it, say A. From an arbitrary point C 
of the curve a straight line CB was drawn to AB meeting it at a 
given angle. The lines AB and EC were then quantities that would 
determine the position of C, and they were called x and y. An 
equation in terms of x and y could determine the curve, by speci- 
fying a property that all its points had to obey. As we have 
noted above this has close similarities to such ancient procedures 
as Apollonius’s establishment of symptomata for the conic sections. 
Descartes’s innovations in this regard lie in his drawing heavily 
upon the traditions of algebra with the consequent assimilation 
of operations on straight lines to operations on number, and in 
his making this mode of representation standard and general. 

Descartes held that the possibility of representing a curve 
by an equation (specification by property) was equivalent to its 
being constructible in terms of the determinate motion criterion 
(specification by genesis) [cf. Vuillemin 1960, 77-931. We should 
note that the quasi-arithmetical operations which Descartes allows 
on straight lines mean that for him an equation is what we should 
call a polynomial equation: there was no place for what would later 
be called transcendental functions. This follows quite naturally 
from the four (or five if extraction of roots is counted) primary 
operations that Descartes allows upon straight lines. In some 
earlier writings we see him making use of compound ratios in 
moving towards his developed doctrine of multiplication of lines 
[I512 and these may have played an explicit role in his original 
solution of the problem of Pappus. This problem was proposed to 
Descartes by Golius in 1631, and Descartes’s occupation with it 
seems to have played a very important role in the development of 
his mature system of geometry. His original solution is lost, 
but the problem forms a central theme in his Ggomgtrie, and an 
examination of it can give us much insight into Descartes’s 
geometrical procedures. 

The problem is as follows [16]. There are given n straight 
lines. From a point C lines are drawn making given angles with 
the given lines. If n=3 the ratio of the product of two of the 
lines from C to the square of the third is given. If n is 
even and greater than two the ratio of the product of n/2 of 
the lines from c to the product of the other n/2 lines is given. 
If n is odd and greater than three, the ratio of the product of 
(n+l)/2 of the lines to the product of the other (n-1)/2 lines 
together with a given line is given. It is required to find 
the locus of c. Pappus said that in the case of three or four 
lines, which had been investigated by Euclid and Apollonius [cf. 
Apol lonius , 1891-93, 1, 4-5; 1896, lxxi], the locus was solid. 
In higher cases it was linear, but there had been virtually no 
study of those cases, and the curves had not in general been 
more fully identified [17]. 

Descartes [AT, 6, 382-384; 1954, 27-321 begins his attack 
on the problem with the use of his characteristic mode of 
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algebraic representation. He takes one of the given lines AB 
as the reference line, and its point of intersection A with one 
of the other given lines as the fixed point. CB is the line from 
a possible position of c falling on AB at the given angle. He 
denotes AB and CB by x and y. He then shows how the lengths of 
the other lines from c to the given lines at the given angles can 
be expressed in terms of x and y and that these expressions are 
of the first degree in x and y. By multiplying these expressions 
an equation may be produced, whose degree depends upon the number 
of lines [AT, 6, 384-387, 396-399; 1954, 32-36, 57-651 so that, 
for instance, when there are four lines the equation will be of the 
second degree. Descartes holds that the locus of C is the curve 
represented by that equation. But an error has in fact crept 
in, owing to the inadequacies of Descartes's techniques for deal- 
ing with changes of sign. In each case there should be two 
equations of the given degree, so that in the four line problem the 
locus of c is not one conic section but two [18]. This error is 
not so fundamental as to vitiate the rest of Descartes's treatment, 
and interestingly enough he seems to have had some inkling of it 
himself, for, as we shall see, he recognises two curves in one 
case of the five line problem. 

Descartes uses the degree of the equation as a basis for 
the classification of curves, although he hints at a finer 
classification on another principle by emphasizing that the circle 
is simpler than the ellipse, parabola or hyperbola [AT, 6, 392- 
393, 396; 1954, 49,571. The use of equations for classification is 
an important application of specification by property, but we 
should be wrong to think that the equation was for Descartes a 
substitute for genetic definition. The production of an equation 
did not solve Pappus's problem. The curve still had to be found. 

Descartes gives most attention to the four-line locus [AT, 
6, 397-407; 1954, 61-811. From the form of the equation and with 
the help of a few simple constructions, he indicates very sketchily 
when the curve will be a parabola, hyperbola, ellipse or circle, 
and gives such parameters as the length of the latus rectum. In 
this he is drawing essentially on the principal planimetric 
properties of the various conic sections as established by 
Apollonius. But when he has achieved this he can also appeal 
to Apollonius for the geometric construction of the curves from 
particular sections of the cone. In this he is not being al- 
together consistent, for Apollonius's criteria for construction 
were different from his own. 

But for the higher cases there was no Apollonius to appeal 
to, and Descartes was left to his own methods. He essayed no 
general treatment and concentrated most of his attention on a 
particular case of the five-line locus [AT, 6, 407-410; 1954, 
81-861. In this, four of the given lines are taken as parallel 
with equal intervals between them. The fifth line is perpen- 
dicular and all the given angles are right angles. The product 
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of. the perpendiculars from c to three of the parallel lines is 
equated with the product of a given line (equal to the interval 
between the parallel lines) and the perpendiculars from C to the 
other two lines. Descartes forms the equation, and solves the 
problem by showing that the same equation applies to a figure 
constructed by his method of determined motions. A parabola is 
constrained to move so that its axis always lies along one of the 
parallel lines. A straight line is constrained to move so that 
it always passes through one of the intersections of the given 
lines and also through a point on the axis of the parabola fixed 
relative to the parabola. The intersections of the parabola and 
the straight line trace out the curve, which is in fact a cubic 
curve with two branches. It was perhaps the symmetrical nature 
of this problem that made Descartes realise that the complete 
solution involved two cubic curves, the second being described 
by reversing the direction of the parabola. 

Descartes’s mathematical laziness is notorious [cf. Allard 
1963, 158-160, section entitled “La lassitude de Descartes envers 
les Mathematiques”], and he himself frequently insisted upon it. 
Very early in his treatment of Pappus’s problem in the G&om&trie 
he claimed [AT, 6, 382; 1954, 271 that “it already wearies me to 
write so much about it,” andhe frequentlysaidthat he was only 
giving a sketchy treatment of particular issues in order that 
others could have the pleasures of discovery or at least realise 
how difficult the matter was. He had the type of mind that was 
happy in producing bold general conceptions, but became bored 
when it was a question of working out the detail, although he 
was quite capable of doing this. Also, after his early work 
in mathematics, he was far more interested in producing a 
natural philosophy with a strong mathematical basis than in working 
on actual problems of pure mathematics. It is thus not surprising 
that the Ggomgtrie can read as if it ought to have been an early 
draft of itself. There are frequent obscurities and lacunae of 
reasoning, and diverse matters that had interested Descartes at 
different times of his life are sometimes thrown together with 
little attempt at unification. This seems particularly so in the 
case of the ovals, which Descartes saw as having application in 
optics, and when treating these his criteria for geometrical 
construction are more lax than his norm. 

He prepared the ground for this at the end of his discussion 
of Pappus’s problem, where he excused himself for not considering 
further higher cases. “I did not undertake to say everything, 
and having explained the manner of finding an infinity of points 
through which [the curves] pass I think that I have sufficiently 
given the means of describing them” [AT, 6, 411; 1954, 891. Here 
Descartes’s indolence seems to have led him to the brink of admit- 
ting definition by equation, but from what follows it is clear that 
he regarded this mode of description as subsidiary to genesis by 
determined motions [AT, 6, 411-412; 1954, 89-901: 
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It is also to the point to remark that there is a great 
difference between this manner of finding several points in order 
to trace a curved line, and that which one uses for the spiral 
and similar [curves] [19]: for by the latter one does not find 
indifferently all the points of the line that one is seeking, but 
only those which can be determined by some measure more simple 
than that which is required to compose it, and so strictly speaking 
one does not find one of its points, that is to say one of those 
which are so proper to the curve that they cannot be found without 
it. But there is no point in the lines that serve for the question 
at issue that cannot be met among those which are determined (qui 
se determinent) in the manner just explained. And because this 
manner of tracing a curved line by finding indifferently several 
of its points only extends to those which can also be described 
by a regular and continuous movement, one ought not to reject it 
entirely from geometry. 
Thus some point-wise descriptions are allowed, but with an in- 
ferior status. Descartes also feels it necessary to make a similar 
concession for certain constructions making use of strings [AT, 6, 
412; 1954, 90-931: 

And one ought no more to reject that [manner of description] 
in which one uses a thread or a doubled cord (une chorde repliee) 
to determine the equality or difference of two or more straight 
lines which can be drawn (tirees) from each point of the curve 
that one seeks to certain other points, or onto certain other lines 
at certain angles, as we did in the Dioptrique in order to explain 
the ellipse and the hyperbola. For, although one could not admit 
any lines which resembled cords, that is to say which became some- 
times straight and sometimes curved, since the ratio between 
straight lines and curved ones, being unknown and even I believe 
being unable to be known by men, one could conclude nothing thence 
that was exact and ensured, yet because one only uses strings in 
these constructions to determine straight lines, whose lengths 
one knows perfectly, this ought not to make one reject them. 

Descartes points out that he has used constructions with strings 
for the ellipse and the hyperbola in his optical writings [see AT, 
6, 165-1781, and it is in an optical context that both pointwise 
descriptions and a string construction reappear in the Geometric. 
Descartes introduces four ovals, all of which he claims are useful 
in optics [AT, 6, 424-429; 1954, 114-125; cf. AT, 10, 310-3281. 
In each case he gives a description by stating how an arbitrary 
point is to be constructed. For a special case of one of them he 
then asserts a construction using string. A rod is pivoted about 
a fixed point in the plane. A string travels from the free end of 
the rod, down the rod to the point where it is kept taut by a 
finger, from there to a fixed point in the plane and then back to 
the finger, and finally from the finger to another fixed point in 
the plane, where its other end is attached. As the rod is moved 
about the pivot, the finger traces out the oval. It is not 
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immediately obvious that this construction serves Descartes's end, 
and he gives no justification for it, but he is in fact right. 
However, string constructions had a rather peripheral place in 
Descartes's foundations of geometry and we must regard them as 
being introduced as a second-rate substitute for constructions 
arising from articulated instruments. And certainly pointwise 
descriptions must be regarded as less than a full genesis, since 
they do not produce all the points of the curve. The norm remained 
the sequence of determined movements of rigid figures. 

CONCLUSION 

In John Aubrey's Brief Lives we have an anecdote of Descartes, 
which Aubrey claimed to have from one Alexander Cowper [Aubrey 
1898, 1, 2221: 

He was so eminently learned that all learned men made visits 
to him, and many of them would desire him to show them...his 
instruments (in those dayes mathematical1 learning lay much in 
the knowledge of instruments, and, as Sir H[enry] S[avile] sayd, 
in doeingof tricks), he would drawe out a little drawer under his 
table, and show them a paire of Compasses with one of the legges 
broken: and then, for his ruler, he used a sheet of paper folded 
double. 
This story, whether true or not, can help to highlight features of 
Descartes's approach to geometry. He sought for clear and dis- 
tinct foundations of geometry, and found it easiest to achieve 
these by drawing on the traditions of contemporary practical 
geometry. This involved reflecting on the use of instruments, but 
it was by no means a case of actually using them. What had to be 
imagined were idealised instruments, and these could be conceived, 
when used in a certain way, to produce the acceptable curves of 
geometry. This involved a radical break with the ancient vision, 
but Descartes disguised the nature of the break by reading his 
own procedures into ancient writings and implying that they used 
criteria of his own kind, but in a more restricted way [20]. 

In Descartes as in the ancients we see clearly the distinc- 
tion between specification by genesis and specification by pro- 
perty. For him the former was certainly fundamental, but the 
changes he made in the latter are more immediately apparent. 
These were grounded in his particular "algebra of straight lines" 
and in his use of a standard method for representing all accep- 
table curves by equations. His work within the theory of equations 
(particularlyinBook 3 of the Ggomgtrie) is also highly significant, 
but in this paper we have been concerned with how Descartes shifted 
the conceptual foundations of geometry. He was very conscious 
that he was making changes, but whereas he gave clear characteri- 
sations of the bases of his own procedures, his account of what 
he was changing from is often historically misleading. In this 
we may sympathise, for, as we have seen, the reconstruction of 
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the ancient foundations is a matter of some complexity, and 
Descartes was not acting as historian. But a close examination 
of these foundations can show many unsuspected differences from 
Descartes. A fuller historical account of how Descartes came to 
make the changes that he did make would demand paying more detailed 
attention to his contemporary intellectual milieu than we have done 
here. But a historical explanation is not satisfactory without 
a clear analysis of what has to be explained, and it is to this 
end that this paper has been principally directed. 

NOTES 

1. For an interesting discussion of the analogous problems sur- 
rounding the “completely arbitrary” function see Becker [1927, 
153-1601. 
2. The concept of intelligible matter in a mathematical context 
is found in Aristotle, Metaphysics 2. 10, 1036a9-12; Z. 11, 
1037al-5; H. 6, 1045a34, but there is some doubt about the status 
of the first two of these passages; see Aristotle [1957, 150, 1521. 

3. I speak here of what Geminus [Proclus 1873, 111; 1948, 1001 
would have called incomposite lines and surfaces, and do not 
consider the specification of such composite lines as the peri- 
meters of polygons. For a useful account of curves in Antiquity 
see Tannery [1912]. 

4. My aim here is to identify the main thrust of Pappus’s argu- 
ments. Particularly in the case of the first derivation, this 
has meant some reconstruction and deviation from his actual 
order of presentation. 

5. Sporus [Pappus 1965, 254-255; 1933, 193-194; Thomas 1957, 1, 
340-3411 had pointed out that the original definition of the quad- 
ratrix did not produce its final point, but only the points before 
the motion was completed. There is thus a limiting process involved. 
The same applies to the construction of the quadratrix from the 
cylindrical helix and the Archimedean spiral. 

6. For fragments of Eratosthenes’ Platonicus see Hiller [1870]. 
It is not certain that the work was a dialogue. 

7. We only consider the first conchoid, but Pappus remarks that 
there were others; cf. Heath [1921, 1, 2401. 

8. Nicomedes used the conchoid for the duplication of the cube, 
and Eutocius [1915, 98-99; Thomas 1957, 1, 296-2991 reports that 
he derided Eratosthenes’ discoveries as both “impracticable and 
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lacking in geometrical sense”. Thus it may be that Nicomedes 
regarded the analogue of the instrumental construction as geo- 
metrical, or, less probably, that he had a completely different 
geometrical construction. 

9. The cissoid is normally identified with the curve described 
by Diocles, but there is no absolute certainty; cf. Thomas [1957, 
1, 270, n.a.1. It is possible, though unlikely, that the Arabic 
version of Diocles’ work discovered by G. J. Toomer [see Toomer 
1972, 190-1911 contains a more geometrically acceptable genesis 
of the curve than that reported by Eutocius. 

10. For Newton’s “organic” (instrumental) construction of the 
cissoid, see Newton [1967-, 5, 464-4661. 

11. Proclus speaks of the property as 76 ~ae’ab-ri, ~a? $ a;‘rb 

sn&pxov; cf. Aristotle, Anal. Post. I. 4, 73b26-32 and Ross’s 
comment in Aristotle [1949, 522-5231. Pappus [1965, 234, 252; 
1933, 178, 1921 uses the phrase -r?j &XIK?V ab~~l~rw~a, and gives 
this for the Archimedean spiral and the quadratrix. He does 
similarly for the conchoid, but in that case his phrase is simply 
~5 od~~~rw~cr [1965, 244; 1933, 1861. Apollonius [1891-93, 1, 41 
spoke of the first book of his Conies as containing the Yevcoels 
and the &IXIK& ~UIIVT&IICL~C~ of the conic sections. 

12. Some of the propositions of Euclid’s Data may be read in this 
way. See e.g. Euclid [1883-1916, 6, 46-551. 

13. Pappus [1965, 662-663; 1933, 495-4961. Hultsch attributes 
this passage to an interpolator. Eutocius [1893, 184-1851 also 
distinguishes plane and solid loci, but he sees the second group as 
comprising many more sections of solids than just the conic sec- 
tions . He does not mention linear loci, but adds that there are 
also loci on surfaces. Proclus [1873, 394-395; 1948, 337-3381 has 
the plane-solid distinction, but appears rather confused, and his 
whole discussion of loci seems to have been forced into a context 
that was not altogether appropriate. Cf. Euclid [1956, 1, 329-3311 

14. Descartes [AT, 6, 388-390; 1954, 41-451. The translations 
from Descartes are in general my own. I have striven for the 
literal, often at the expense of the elegant. 

15. The steps by which Descartes struggled towards his mature 
form of algebraic representation cannot be considered in detail 
here. Among the rather scanty evidence, important pieces may be 
found in Regulae ad directionem ingenii 15-18 [AT, 10, 453-469; 
1955, 65-771. Compare with this Beeckman’s notes from 1628-29 
[AT, 10, 333-3351, and see Milhaud’s discussion [1921, 70-72, n.l]. 
In Descartes’s extant letter to Golius on the problem of Pappus in 
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January 1632 [AT, 1, 232-2351 there are puzzling references to 
the motion of construction being determined by simple relations, 
which are in turn explicated in terms of single ratios (propor- 
tiones singulae). 

16. Pappus [1965, 676-681; 1933, 506-510; Thomas 1957, 1, 488-489, 
2, 600-6031 had given a statement of the problem in his account of 
Apollonius ‘s Conies. In the Ggombtrie Descartes [AT, 6, 377-379; 
1954, 16-201 takes over this account from Commandinus’s translation 
of the Collectio. In our exposition of the problem we shall, 
unlike Pappus, freely allow the product of straight lines to be a 
straight line, and we shall introduce the symbol n when speaking 
of the number of lines. 

17. A textual obscurity in Pappus’s account causes difficulties 
in assessing exactly what the ancients did in this regard, but 
according to him it was certainly little. Cf. Pappus [1933, 508, 
n.81. 

18. In terms of modern “Cartesian coordinates” this may be seen 
as follows. Consider a line ax+by+c = 0 and a point C(l,m) not 

The er endicular distance of c to the line is 
%Ll+c),~. The length of a line from C to ax+by+c = 0 
intersecting it at a given angle B is (es&) (al+bm+c)/Jaa+bb 
Thus if we have four given lines distinguished by the subscripts 
1,2,3,4, the conditions of the problem mean that C(l,m) must 
satisfy: 

(all+blm+cl) (a21+b2m+c2)/ d(a12+bl') (azL+bzTJ 

2 2 = + k(a31+bptc3) (aql+b,+m+q)/ Jfa3'+bsL) (a4 +b4 ) 

where k is a constant determined by the given angles. Thus c 
must lie on one of two conic sections, obtained respectively 
by taking the plus sign and the minus sign before k. Converse- 
ly any point on either curve satisfies the required relation of 
distances, and so the locus is two conic sections. cf. [AT, 6, 
7241. 

19. Christopher Clavius [1606, 320-3221 had attempted such a 
description of the quadratrix. 

20. We may see Descartes’s interpretation of the ancient procedures 
as a natural progenitor of the great concern in the seventeenth 
and eighteenth centuries with organic (or instrumental) geneses 
of curves. For an account of such constructions from Antiquity 
to the eighteenth century see von Braunmtihl [1892]. 
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