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SUMMARIES 

The traditional thesis that analytic geometry 
evolved from the concepts of axes of reference, 
co-ordinates, and loci, is rejected. The origins 
of this science are re-defined in terms of Egyptian, 
Greek, Babylonian, and Arabic influences merging in 
Vieta's Isagoge in artem analyticam (1591) and 
culminating in a work of his pupil Ghetaldi pub- 
lished posthumously in 1630. Descartes' Vera mathesis, 
conceived over a decade earlier, served to revive 
and strengthen the important link with logic and 
thereby to extend the field of application of this 
analytic method to the corporeal and moral worlds. 

Die allgemein aufgestellte These, dass die analytische 
Geometrie, die aus den Begriffen Achse, Koordinate 
und Ort entfaltet wurde, wird abgelehnt. Diese 
mathematische Wissenschaft wird hier gedeutet durch 
Zgyptische, griechische, babylonische sowie arabische 
Einfliisse, die in Vietas Isagoge in artem analyticam 
(1591) vereinigt und 1630 in einem nachgelassenen 
Werk seines Schiilers Ghetaldi umgestaltet werden. 
Die von Descartes iiber eine Dekade frtiher erfundene 
Vera mathesis diente dazu, das wichtige Bindeglied 
zur Logik wieder zu beleben und zu St&-ken und somit 
diese Methode auf physikalische und moralische Welt 
auszubreiten. 

As far as I am aware, the first person to challenge the be- 
lief that analytic geometry sprang like Athena from the head of 
Rene Descartes was the nineteenth-century German cartographer 
Sigmund Glinther [1877]; according to whom there are three distinct 
conceptual stages which had to be progressively attained before 
that mathematical science came into existence: 

(1) The specification of position on a surface with regard 
to two axes. 

(2) The graphical representation of the relationship between 
the ordinates and the abscissae (i.e. between the de- 
pendent and independent variables). 

(3) The discovery of the law, or algebraic equation, corre- 
sponding to that geometrical curve. 
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Matthias Schramm [1965] tells us that this is how common 
opinion still sees the situation--despite the fact that almost 
thirty years previously Julian Coolidge explicitly rejected 
Gilnther’s point of view in favour of the thesis that “the essence 
of plane analytic geometry is the study of loci by means of their 
equations and. . . this was known to the Greeks and was the basis 
for their study of conic sections.” [Coolidge 1936, 2331 

Whether or not one is prepared to agree with Coolidge that 
the credit for this important discovery should go to Eudoxus’s 
pupil Menaechmus, who is generally credited with having been the 
first to discover the conic sections, one must surely concede 
his point that the manner in which the Greeks treated the geometry 
of this class of curves is easily reducible to modern algebraic 
terminology. 

It is consistent with Giinther’s interpretation to regard 
Apollonius of Perga (3rd century B.C.), who made use of coordi- 
nates and oblique axes in his Conies, as the ‘father’ of analytic 
geometry; and Descartes, who generalized those tonics and reduced 
a hyperbola to an algebraic relationship between the section of 
the diameter and lines, as the ‘midwife’ who delivered the ‘baby’. 
According to E. T. Bell, in Men of Mathematics, the date of birth 
was the 11 November 1619. This was supposedly when Descartes 
saw the Greek infant clearly for the first time, as a result of 
a dream. The ‘delivery ward’ was a stove-heated room somewhere 
in the south of Germany. Only after the ‘child’ had matured to 
the age of eighteen, did he allow it to make its ‘debut’ before 
the learned workd, in the form of an essay entitled simply “La 
Ge’omBtrie” appended to his first published work Discours de la 
M&thode (Amsterdam, 1637). 

This homely analogy was implicitly accepted by Carl Boyer 
when he wrote his authoritative History of Analytic Geometry 

(1956). The present brief treatment of the early phases of such 
a complex story would naturally be inadequate as an attempt to 
re-examine the conceptual ramifications which are there SO fully 
and ably discussed. Its value lies rather in its explicit rejec- 
tion of Gi.?nther’s thesis and reassessment of Descartes’ achieve- 
ment in association with an alternative framework for interpreta- 
tion suggesting lines of research which may still be profitably 
explored. 

Although, for reasons explained below, I am unwilling to 
accept Giinther’s evolutionary view of the birth of this subject, 
I would not wish to deny the fact that both axes of reference and 
co-ordinates were in widespread use in western Europe long before 
Descartes’ own time. From the fourth century B.C. onwards, the 
ecliptic circle, or Sun’s apparent annual path through the sky, 
was graduated from O” to 360’ and subdivided into 12 equal parts 
in order to serve as a calculating device by which a planet’s 
celestial position could be expressed in terms of its angular 
distance relative to a bright star, or group of stars, in its 
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neighbourhood. The origin of this single-axis reference system 
(or zodiacal circle) for obtaining celestial longitudes, was one 
of the two points at which the ecliptic intersects the projection 
of the terrestrial equator on the celestial sphere (viz. the 
Vernal Equinox). Hipparchus (2nd century B.C.) referred the 
positions of well over 800 bright stars to that same origin, at 
the same time introducing, as a second co-ordinate for uniquely 
specifying a star’s position on the celestial sphere, its angular 
distance measured at right-angles north or south of the same 
fundamental reference plane (viz. celestial latitude). In the 
field of geometry, a very clear application of the coordinate 
principle is to be found in the first book of Apollonius’s Conies. 
Hero of Alexandria used rectangular coordinates in geodetic 
measurements, and the Romans used them in their land surveys. 
The geographical maps of Ptolemy (2nd century A.D.) show terrestria 
longitude and latitude differences. 

In the Bavarian State Library in Munich there is a 10th cen- 
tury manuscript transcription of the Roman grammarian-philosopher 
Macrobius’s commentary on Cicero’s Dream, in which a graph is 
used to illustrate the inclinations of the planetary orbits as 
a function of time [Funkhouser 19361. A late medieval example 
of the use of orthogonal axes to denote position in a plane is 
Nicolas Oresme’s “latitude of forms”, which Coolidge confesses 
to having studied hard without being able to understand its 
significance. It appears, however, that although the original 
purpose of Oresme’s graphical representation of the notion of 
change was theological, it became widely known in scholastic 
circles during the 15th and 16th centuries through its applica- 
tion to the particular relationship between uniform and uniformly- 
accelerated motion. Mainly on this account, it has often been 
cited as a possible source of Descartes’ own knowledge of the 
coordinate principle; yet no internal evidence in his mathematical 
writings has been found to support this belief. On the contrary, 
there is no reason to doubt the veracity of his statement that 
he acquired this insight while lying in bed watching a fly 
crawling across his bedroom ceiling! 

Be that as it may, Schramm [1965] has explicitly dismissed 
as irrelevant the question of whether or not Descartes was fully 
aware of the coordinate principle, since in his view Greek 
geometry and the Algebra of Omar Khayyam are alone sufficient 
for interpreting the structure of La G&om&rie. In the same 
article, Schramm puts another spoke into Gunther’s thesis by 
stressing that the concept of a function, or locus, was already 
implicit in the solar ephemerides of the Seleucid astronomers 
and in sequences with constant second-order differences which 
occur in the refraction table of Ptolemy’s Optics. Thus he 
maintains that a training in logistics, meaning the technique 
of numerical calculation, was at the root of a tradition derived 
from the Babylonians and developed by Arabic scientists who also 
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supplied the algebraic formulae necessary for the exposition of 
Greek geometrical methods. 

An explanation of how logistics was linked to the theory of 
functions during the Alexandrian era of Greek culture has recently 
been given by Olaf Pedersen [1974]. After Plato, in Book 7 of 
his Republic, had advocated a separation between theory and 
practice, a formal distinction came to be made between pure mathe- 
matics (viz. arithmetic and geometry) and applied mathematics 
(viz. music and astronomy, geodesy, optics, mechanics and lo- 
gistics). Despite the fact that no Greek exposition or manual 
of logistics has ever been found in Western Europe, Pedersen 
shows how the existence of this computational art can be es- 
tablished from a detailed study of Ptolemy's Almagest, in which 
a great number of practical methods for operating with functions 
of different kinds are presupposed. His analysis reveals that 
Hellenistic mathematicians carried logistics to a much higher 
degree of sophistication than has hitherto been suspected. They 
had methods for dealing with functions of one, two, and even 
three variables where 'function' in this context does not mean 
'formula' but 'a general relation associating the elements of 
one set of numbers . ..with another set'; for example, the instants 
of time with some angular variable in planetary theory. Perhaps 
it was only the difficulty in understanding the concept of infini- 
ty which prevented the Greeks from developing an actual theory 
of functions. 

Pedersen's discussion really refers to what Jacob Klein 
[1968] had christened earlier as 'theoretical logistics', or the 
theory of ratios and proportions such as was applied by Eudoxus 
to both incommensurable and commensurable magnitudes (see Euclid 
V) and to geometry (see Euclid VI). The traditional origins of 
these procedures, like those of geometry, were Egyptian; thus 
it is not surprising that one of the most outstanding examples 
of its subsequent development should be found in the Arithmetic 
of Diophantus of Alexandria (3rd century A.D.). The style of 
this treatise differs from that of books on modern algebra in 
not being organised around types of equations and methods of 
solution, but structured according to the types of relations 
that numbers can bear to one another. It is now recognised as 
representing a tradition stemming from early Greek (and perhaps 
Egyptian) sources--quite separate from the Babylonian-Arabic 
tradition of 'practical logistics' with which Schramm was primarily 
concerned, imported into Western Europe by Leonardo of Pisa at 
the beginning of the 13th century. 

Diophantusls Arithmetic, and the 7th book of Pappus of 
Alexandria's Collection, were the two major sources of Vieta's 
Isagoge in artem analyticam (1591) which shows how, by reducing 
equations to the form of proportions, an algebraic equation can 
be treated in a geometric way. (e.g. x2 f bx = c2 may be otherwise 
written as x/c = c/(x+b)). In this respect, of course, Vieta 
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was merely following the Greek geometrical tradition. There was 
no real novelty either in his introduction of a general algebraic 
symbolism transcending that of the earlier Arabic and Persian al- 
gebraists and the members of the so-called “cossic school” such 
as Stifel, Cardan, Tartaglia, NuAez, and Clavius. The key to 
Vieta’s fundamental transformation in the conceptual basis of this 
subject was his elaboration of its methodological foundations from 
the traditional two-fold analytic (or zetetic) art and synthetic 
(or poristic) art of classical Greek geometry, to a three-fold 
procedure introducing a computational (or exegetic) art. 

In order to appreciate the full significance of this innova- 
tion, it is first necessary to recognise what was implied by the 
terms ‘analysis’ and ‘synthesis’. The classical scholar H. D. P. 
Lee [1935] has argued convincingly that the first principles of 
geometry, along with its methodological procedures, can be identi- 
fied with those laid down as being valid for the whole of science, 
in Aristotle’s Prior and Posterior Analytics. In composing this 
logical treatise, Aristotle may have been borrowing from contempo- 
rary geometers, but it is impossible for us now to assess the 
extent of his own modifications of their work. Lee carefully 
examined the connections between the mathematical and philosophical 
principles, and summarised his conclusions as follows: 

Euclid's Common Notions and Aristotle's Axioms, and 
the Definitions of both, are exactly parallel. The 
common notions and axioms are principles of reasoning 
whose scope extends further than that of a single 
science: the definitions are statements of the 
meaning of terms. To Aristotle's hypotheses answer 
Euclid's postulates. Both are a minimum of further 
assumptions necessary besides the axioms or common 
notions and the definitions. The hypotheses assume 
existence, the postulates the possibility of 
constructions, etc. [Lee 1935, 1171 

He is, however, careful to point out that Euclid need not have 
been influenced directly by Aristotle; the former was merely 
repeating and collating ideas which were in vogue at the time. 

In Aristotle’s account of the logical procedure of science, 
which he applies in his Ethics, there is first an intuitive 
movement of thought in which the mind grasps the requisite ele- 
mentary principles (or ‘archai’), followed by a deductive process 
in which the logical consequences of these principles are traced 
out. At the moral level, there is little difference between it 
and Plato’s dialectic. At first sight, it would appear that 
analysis-- the step which leads from the unknown to the known--is 
absent in Euclid’s Elements; for this has the appearance of a 
purely synthetic treatise, proceeding from the known and simple 
to the unknown and more complex. From what is now known about 
the latent empiricism in Greek mathematics, one is nevertheless 
inclined to suspect that it played a part in the discovery of 



146 E. G. Forbes HM4 

the proofs. Euclid’s reductio ad absurdum proofs can themselves 
be regarded as involving analysis, since they begin with the re- 
duction of the proposition that requires proof--assumed to be 
true--to something simpler that is immediately recognisable as 
true or false. The false case is the absurdity; the method which 
reveals it, analysis. 

In Book 7 of Pappus’s Collection, which was compiled almost 
six centuries later, the two procedures are defined explicitly 
as follows : 

Analysis takes that which is sought as if it were ad- 
mitted and passes from it through its successive conse- 
quences to something which is admitted as the result of 
synthesis; for in analysis we assume that which is 
sought as if it were already done, and we enquire what 
it is from which this results, and again what is the 
antecedent cause of the latter, and so on, until, by 
so retracing our steps, we come upon something already 
known or belonging to the class of first principles 
[ viz. a corollary or porism] and such a method we call 
analysis as being solution backwards. But in synthesis, 
reversing the process, we take as already done that 
which was last arrived at in the analysis and, by 
arranging in their natural order as consequences 
what before were antecedents, and successively con- 
necting them one with another, we arrive finally at 
the construction of that which was sought; and this 
we call synthesis. [Heath 1963, 4521 

This was the very statement of method which Vieta was to read 
many centuries later, and adapt to his own purpose by introducing 
the following analogous definitions: 

Zetesis: the procedure "through which the equation or the 
proportion is found which is to be constructed 
by the aid of the given magnitudes with a view 
to the magnitudes sought." 

Poristic: the procedure "through which by means of the 
equation or proportion the truth of the theorem 
set up [in them] is investigated." 

[Klein 1968, Appendix] 
Thus, as he remarks, theorems demonstrated by zetesis are then 
subjected to the law of synthesis since this was considered to 
be a more logical way of demonstrating; after which, the steps 
of the analysis were retraced. If, at some stage, one were to 
encounter an unexpected result requiring demonstration, this had 
to be done poristically. The loss of Euclid’s three books of 
Porisms has obscured the precise meaning of this term, although 
the nearest synonym would appear to be ‘corollary’--a type of 
proposition intermediate between a theorem and a problem, dealing 
with something already in existence yet which has to be found 
by means of the construction of geometrical magnitudes. 
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The novelty of the exegetic art “through which the magnitude 
sought was itself produced out of the equation or proportion set 
JP” , was that it introduced the computation of arithmetical mag- 
nitudes--effectively, by the solution of an algebraic equation-- 
and thereby unified the Greek logistical procedure with the tra- 
ditional method of analysis and synthesis. This is why Vieta 
believed he had created a new analytical art that would leave no 
Problem unsolved. It would certainly appear that something more 
than geometrical algebra, the application of geometrical con- 
structions to the solution of algebraic equations, is here in- 
volved; although that too unquestionably constitutes a necessary 
and indeed characteristic feature of Vieta’s approach. The “some- 
thing” is rather difficult to pin-point, but I believe that it 
may be connected with a class of porisms which form a kind of 
“missing link” between the procedures of Pappus and those con- 
tained in Diophantus’s Arithmetic--namely, those concerned with 
the construction of loci from given geometrical conditions. Al- 
though our knowledge of these is scanty, one such porism, which 
has attained great historical importance on .account of its cen- 
tral r61e in the formulation of Descartes GBom&rie, is the 
famous Problem of Pappus. I believe that in this class of pro- 
blem is to be found the earliest indication of the notion of an 
algebraic equation representing a geometrical curve. The lack 
of a well-developed symbolism in Pappus’s and Diophantus’s time, 
and historical accident, have conspired to hide this advanced 
Alexandrian development from posterity. The fact that Diophantus’s 
Arithmetic also incorporated earlier Greek and Hellenistic 
sources, such as Plato’s maws and Charmides, Euclid’s Elements 
(Books VII-IX), and Hero’s Metrika, then later absorbed into 
the Arabic tradition by.al-Biizjanl, Qusta ibn Liiql, and possibly 
al-Haitham during the 10th century, unfortunately tends to ob- 
scure the precise nature of its influence upon Vieta himself. 
For the sake of simplicity, however, one might differentiate 
between his new analytical art and geometrical algebra by asserting 
that the former embodies the direct influence of the Graeco- 
Egyptian tradition of theoretical logistics, whereas the latter 
does not, 

I do not feel inclined to identify Vieta’s achievement with 
the birth of analytic geometry, although I am content to label 
his new art ‘geometrical analysis ’ to distinguish it from ‘gee- 
metrical algebra’. Still to be done to effect what in my view 
was the final stage in the embryonic evolution of analytic 
geometry was to transfer the purpose of Vieta’s analysis away 
from geometrical constructions to the solution of algebraic equa- 
tions, towards the application of the already well-known algebraic 
techniques to the solution of geometrical problems. This trans- 
formation was first effected by Vieta’s contemporary and one- 
time pupil Marino Ghetaldi, in his posthumously-published De 
resolutione et compositione mathematics (Rome 1630). Here, the 
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status of symbolic algebra was raised from a “means to an end” 
to a method in its own right, with a wider scope and application 
than it had hitherto possessed [Gelcich 18821. Although it is 
therefore easy to appreciate why Ghetaldi has been hailed by 
various mathematicians as the father of analytic geometry, I feel 
that this title accords undue credit to what was primarily Vieta’s 
achievement. Perhaps an acceptable compromise is to regard this 
science as having been conceived jointly by both of them. Vieta, 
as the originator of the indispensible unification of the various 
ancient and medieval traditions, would seem entitled to be 
designated as the ‘father’; while Ghetaldi, as the person who 
nurtured the embryo of this new analytical art, to that of 
‘mother’. One might tentatively date the moment of conception 
as Ghetaldi’s first meetings with Vieta in Paris in 1604, and 
the time of birth as shortly before his death in 1627 when he is 
known to have composed his treatise. Whatever one may think of 
this overworked and perhaps immoral analogy, two things follow 
automatically from the proposed interpretation of the birth of 
analytic geometry: one is that it did not require the adoption 
of the coordinate principle, as Giinther claimed; and the other 
is that it occurred prior to the publication of Descartes’ 
G6om&trie. A visual aid for recalling the various mathematical 
developments described in the foregoing text is provided in the 
form of this diagrammatic summary. 

DESCARTES 
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The question which still demands an answer is: where does 
Descartes ’ work fit into this picture? Descartes ’ earliest 
known mathematical discoveries were made in March 1619, some four 
months after his memorable encounter with the Dutch mathematician 
Isaac Beeckman, when he envisaged four new compass constructions 
including one for the solution of the ancient Greek problem of 
*:risecting an angle and another for solving a cubic equation. 
‘This preoccupation with compasses is usually taken to be an in- 
Ilication of his just having read Commandino’s 1588 translation 
of Pappus’s Collection, in which descriptions are given of con- 
!;tructions used by different Greek geometers for tracing complex 
1:urves like the conchoid of Nicomedes (3rd century B.C.). Other 
:iacts worth stressing in this connection are Descartes’ con- 
1:eption of the magnitude x3 as a length, not as a volume, his 
distinguishing of 13 different cases of a cubic equation 

[viz. x 
3 

= +px tq, x3 = fpx2 +q, x3 
2 

= + px +qx+r - 

where p,q,r > 0), and his recognition that the method of con- 
!;truction used in solving a cubic equation seemed capable of 
being extended indefinitely to include higher powers of x. 

It would also appear to be significant that, when writing 
down these equations, Descartes adopted the same “cossic” nota- 
Zion as that of Father Christopher Clavius in the second 
I:nlarged edition of his Geometrica practica (Mayence, 1611) which 
was a recommended text-book at the Jesuit school of La Fleche 
while Descartes was a pupil there. Clavius’s book certainly 
r:ontains the same geometrical constructions for representing the 
‘?oots of algebraic equations as one finds at the beginning of 
Descartes’ Ggomgtrie, and an explanation of Cardan’s and Vieta’s 
method of solving the most general form of a cubic equation by 
!:liminating the term in x2. This latter procedure is exemplified 

for a particular case (viz. x3 = 6x2 - 6x + 56) in Descartes’ 
Zogitationes privatae (1619). It has been suggested by Gaston 
Milhaud [1921] that Descartes might have followed up a clue in 
i:laviusls book to Eutochius’s Commentary on Euclid for his know- 
ledge of how problems in solid geometry, such as those of 
Menaechmus , could be solved using conic sections, At any rate 
ile had read this work, which is bound together with the first 
:;atin translation of Archimedes’ Greek text (Basle, 1544), and 
,\pollonius’s Conies, before the end of the year. Descartes’ 
I)wn treatise De solidorum elementis (1619)--containing the 
famous relationship F + V = E + 2 among the faces (F), vertices 
(V), and edges (E) of regular polyhedra, often erroneously at- 
tributed to Euler--could be interpreted as an attempt to algebrify 
solid geometry and hence the world of nature. If it were, it 
was a fruitless one. 

Descartes’ Vera mathesis, or Universal mathematics, con- 
ceived about this time, is no more distinguishable from his 
ljhilosophic method than the principles and method of Euclidean 
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geometry are from Aristotle’s Analytics. It is founded upon the 
straight line as being the most elementary geometrical notion, 
coupled with the four fundamental algebraic operations (+, -, 
x, 5) and the laws of ratio and proportion. These principles 
sufficed to define all curves in terms of a distance along each 
of two axes (which may, or may not,be orthogonal), and to ex- 
press the relation between these distances symbolically (viz. 
by a formula). His recognition as early as March 1619 that such 
a symbolic logistic might be the methodological tool of a grandiose 
science that was “nothing less than a complete classification of 
all questions concerning the nature and resolution of quantity”, 
stemmed from his knowledge that mathematical generalizations 
obtained through its use were capable of being extended beyond 
the realm of spatial relationships only, back into the broader 
realm of philosophy from whence they had sprung. The need for 
symbolism lay in the step of separating the logical results of 
geometrical deduction from the intuitive principles from which 
they had been logically derived. By representing these princi- 
ples by symbols, one might divorce the geometrical properties 
from their spatial context and produce instead a self-consistent 
set of equations or symbolic logic. Then a symbol originally 
representing a length, area, or volume, could equally well be 
regarded as representing any type of dimension; for example, 
a dimension of motion (velocity) or a dimension of heaviness 
(weight). By this means, and by identifying spatial extension 
with the substance of a body, Universal Mathematics could be 
made to comprehend the corporeal world. This, in my view, was 
the essence of what Descartes claimed to have discovered on 11 
November 1619, which several commentators have called the birth 
of analytic geometry but which I would prefer to call the birth 
of theoretical physics (or indeed, the birth of a new science 
of morals), since I feel that the realm of mathematics has been 
transcended. Only because analytic geometry has now grown to 
embody the formalistic expression of natural phenomena, and its 
logical symbolism to supplant the intuitively simpler but less 
flexible geometrical models or analogies, has this distinction 
become blurred. 

We see, therefore, that one great intellectual leap carried 
Descartes over the restrictive boundaries of geometrical analysis 
into the realm of an “entirely new science” which it became his 
immediate mission in life to develop and propagate. The famous 
dream associated with this revelation should probably be regarded 
as a deliberately-chosen literary device for communicating in 
classical imagery the idea that his thinking was being divinely- 
inspired, and consequently embodied the truth about the world of 
nature. Moreover, it served to remind others of the fact that 
the door to true understanding was a form of intuition or 
natural enlightenment rather than syllogistic argumentation in 
which the conclusions could never transcend the precepts from 
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which they had been derived. Thus intuition was the vitalizing 
element in Descartes’ new philosophical method, just as the 
exegetic procedure had been in Vieta’s new analytical art. His 
consciousness of what he was attempting to achieve is expressed 
in part 2 of his Discourse on Method (1637)) where he refers to 
his early studies in logic, geometry, and algebra, and states: 
“I thought I must look for some other method which would combine 
the advantages of these three disciplines, and yet be exempt from 
their defects.” It was this thought which led him to his four 
rules of method, the heart of his philosophy. 

NOTE 

1. This paper is a modified and reduced version of a 
lecture delivered by the author to the British Society for the 
History of Mathematics in London on 17 December 1974. 
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