Decoding Algorithms for Reed-Solomon Codes

Annie Cervin

Department of Mathematics and Computer Science
College of the Holy Cross

Advisor: John Little
1 Introduction
 - Coding Theory
 - Reed-Solomon Codes
 - Encoding

2 Unique Decoding Algorithms for Reed-Solomon Codes
 - Decoding Reed-Solomon Codes

3 List Decoding Algorithms for Reed-Solomon Codes
 - Interpolation and Factorization

4 The Lee O’Sullivan Algorithm and the FGLM Algorithm
 - The Lee O’Sullivan Algorithm
 - The FGLM Algorithm
 - Theoretical Comparison
 - Experimental Comparison
Introduced by Claude Shannon in 1948, coding theory tries to eliminate errors in transmitted messages.
Coding theory involves the study of both encoding and decoding.

- The encoding algorithm incorporates redundancy into a message.
Coding theory involves the study of both encoding and decoding.

- The encoding algorithm incorporates redundancy into a message.

- The message is transmitted.
Coding theory involves the study of both encoding and decoding.

- The encoding algorithm incorporates redundancy into a message.
- The message is transmitted.
- The decoding algorithm analyzes the received word and uses the redundancy to find the possibilities for the original message.
Block Codes

Uncoded messages are divided into words with fixed length k.
Block Codes

- Uncoded messages are divided into words with fixed length k.
- The words are made from an alphabet of q symbols.
Block Codes

- Uncoded messages are divided into words with fixed length k.
- The words are made from an alphabet of q symbols.
- Each alphabet of q symbols corresponds to a finite field \mathbb{F}_q.
Block Codes

- Uncoded messages are divided into words with fixed length k.
- The words are made from an alphabet of q symbols.
- Each alphabet of q symbols corresponds to a finite field \mathbb{F}_q.
- The possible words in a message can be thought of as k-tuples of elements of \mathbb{F}_q. The collection of words is identified as \mathbb{F}_q^k.
Block Codes

- Uncoded messages are divided into words with fixed length k.
- The words are made from an alphabet of q symbols.
- Each alphabet of q symbols corresponds to a finite field \mathbb{F}_q.
- The possible words in a message can be thought of as k-tuples of elements of \mathbb{F}_q. The collection of words is identified as \mathbb{F}_q^k.
- Pick an integer $n > k$.

Introduction
Unique Decoding Algorithms for Reed-Solomon Codes
List Decoding Algorithms for Reed-Solomon Codes
The Lee O'Sullivan Algorithm and the FGLM Algorithm
Summary

Coding Theory
Reed-Solomon Codes
Encoding

Uncoded messages are divided into words with fixed length k.
The words are made from an alphabet of q symbols.
Each alphabet of q symbols corresponds to a finite field \mathbb{F}_q.
The possible words in a message can be thought of as k-tuples of elements of \mathbb{F}_q. The collection of words is identified as \mathbb{F}_q^k.
Pick an integer $n > k$.

Annie Cervin
Decoding Algorithms for Reed-Solomon Codes
Block Codes

- Uncoded messages are divided into words with fixed length k.
- The words are made from an alphabet of q symbols.
- Each alphabet of q symbols corresponds to a finite field \mathbb{F}_q.
- The possible words in a message can be thought of as k-tuples of elements of \mathbb{F}_q. The collection of words is identified as \mathbb{F}_q^k.
- Pick an integer $n > k$.
- Each message will consist of blocks of n-tuples.
Encoding and Decoding Operations

- The encoding operation can be described as $E : \mathbb{F}_q^k \rightarrow \mathbb{F}_q^n$.
Encoding and Decoding Operations

- The encoding operation can be described as $E : \mathbb{F}_q^k \rightarrow \mathbb{F}_q^n$.
- The decoding operation is $D : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^k \cup \{\text{fail}\}$.
Encoding and Decoding Operations

- The encoding operation can be described as $E : \mathbb{F}_q^k \rightarrow \mathbb{F}_q^n$.
- The decoding operation is $D : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^k \cup \{\text{fail}\}$.
- The set of all codewords is $C = \text{Im}(E)$.

Annie Cervin
Decoding Algorithms for Reed-Solomon Codes
Encoding and Decoding Operations

- The encoding operation can be described as $E : \mathbb{F}_q^k \rightarrow \mathbb{F}_q^n$.
- The decoding operation is $D : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^k \cup \{\text{fail}\}$.
- The set of all codewords is $C = \text{Im}(E)$.
- When a codeword x is transmitted with an error, x is replaced by $v = x + e$.

Encoding and Decoding Operations

- The encoding operation can be described as $E : \mathbb{F}_q^k \rightarrow \mathbb{F}_q^n$.
- The decoding operation is $D : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^k \cup \{\text{fail}\}$.
- The set of all codewords is $C = \text{Im}(E)$.
- When a codeword x is transmitted with an error, x is replaced by $v = x + e$.
- The error vector is $e \in \mathbb{F}_q^n$ and v is the received word.
Hamming Distance

Definition

The Hamming weight of a word u, written as $wt(u)$, is the number of non-zero entries in u. The Hamming distance between two words u and v, written as $d(u, v)$, is the number of entries in which they differ.

- Working over the finite field \mathbb{F}_7, let $u=(3, 1, 3, 5, 0, 6, 5)$ and $v = (3, 1, 2, 4, 0, 2, 0)$.
Hamming Distance

Definition

The Hamming weight of a word u, written as $\text{wt}(u)$, is the number of non-zero entries in u. The Hamming distance between two words u and v, written as $d(u, v)$, is the number of entries in which they differ.

- Working over the finite field \mathbb{F}_7, let $u = (3, 1, 3, 5, 0, 6, 5)$ and $v = (3, 1, 2, 4, 0, 2, 0)$.
- $u - v = (0, 0, 1, 1, 0, 4, 5)$.
Hamming Distance

Definition

The Hamming weight of a word u, written as $\text{wt}(u)$, is the number of non-zero entries in u. The Hamming distance between two words u and v, written as $d(u, v)$, is the number of entries in which they differ.

- Working over the finite field \mathbb{F}_7, let $u=(3, 1, 3, 5, 0, 6, 5)$ and $v = (3, 1, 2, 4, 0, 2, 0)$.
- $u - v = (0, 0, 1, 1, 0, 4, 5)$.
- Then $\text{wt}(u - v)$ is 4 and the Hamming distance between u and v is 4.
Definition

The minimum distance d of a code C is the smallest Hamming distance between distinct codewords of C.

Let C have the following codewords:

$(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)$.
Definition

The minimum distance d *of a code* C *is the smallest Hamming distance between distinct codewords of* C.

- Let C have the following codewords:
 - $(0, 0, 0)$, $(1, 1, 0)$, $(0, 1, 1)$, $(1, 0, 1)$.
- Each differs from the other in at least two places.
Definition

The minimum distance d *of a code* C *is the smallest Hamming distance between distinct codewords of* C.

- Let C have the following codewords: $(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)$.
- Each differs from the other in at least two places.
- Thus, the minimum distance of C is 2.
Detection and Correction of Errors

Theorem

Let C be a code. Then errors of weight $\leq \delta$ in the received words can be detected if and only if the minimum distance $d \geq \delta + 1$.

Theorem

Errors of weight $\leq \delta$ can be corrected by nearest neighbor decoding if $d \geq 2\delta + 1$.
Introduction

- Presented in a paper by Irving Reed and Gustave Solomon in 1960.
Introduction

- Presented in a paper by Irving Reed and Gustave Solomon in 1960.
- They are used in Compact Disc players and space communication.
Introduction

- Presented in a paper by Irving Reed and Gustave Solomon in 1960.
- They are used in Compact Disc players and space communication.
- Based on finite fields or Galois Fields.
Introduction

- Presented in a paper by Irving Reed and Gustave Solomon in 1960.
- They are used in Compact Disc players and space communication.
- Based on finite fields or Galois Fields.
- Reed-Solomon codes are linear codes.

Definition

A linear code of length n over the field \mathbb{F}_q is a vector subspace of \mathbb{F}_q^n.

Annie Cervin

Decoding Algorithms for Reed-Solomon Codes
The codes achieve the Singleton bound over a fixed finite field.

Theorem

The Singleton bound requires that for any code \(C \subset \mathbb{F}_q^n \) *with* \(q^k \) *codewords and minimum distance* \(d \),

\[
k \leq n - d + 1.
\]
Creating Reed-Solomon Codes

- We fix \(n = q - 1 \), an integer \(k \leq q \), and all polynomials with degree \(\leq k - 1 \) over \(\mathbb{F}_q \).
Creating Reed-Solomon Codes

- We fix $n = q - 1$, an integer $k \leq q$, and all polynomials with degree $\leq k - 1$ over \mathbb{F}_q.
- Each codeword is made by evaluating one of these polynomials with coefficients in \mathbb{F}_q at the nonzero elements of \mathbb{F}_q.
Creating Reed-Solomon Codes

- We fix $n = q - 1$, an integer $k \leq q$, and all polynomials with degree $\leq k - 1$ over \mathbb{F}_q.
- Each codeword is made by evaluating one of these polynomials with coefficients in \mathbb{F}_q at the nonzero elements of \mathbb{F}_q.
- The nonzero elements can be written in terms of a primitive element for \mathbb{F}_q, α, and are $1, \alpha, \ldots, \alpha^{q-2}$.
Creating Reed-Solomon Codes

- We fix \(n = q - 1 \), an integer \(k \leq q \), and all polynomials with degree \(\leq k - 1 \) over \(\mathbb{F}_q \).
- Each codeword is made by evaluating one of these polynomials with coefficients in \(\mathbb{F}_q \) at the nonzero elements of \(\mathbb{F}_q \).
- The nonzero elements can be written in terms of a primitive element for \(\mathbb{F}_q \), \(\alpha \), and are \(1, \alpha, \ldots, \alpha^{q-2} \).
- Let \(L_k \) be the \(\mathbb{F}_q \) vector space of polynomials of degree \(< k \) with coefficients in \(\mathbb{F}_q \).
Creating Reed-Solomon Codes

- We fix \(n = q - 1 \), an integer \(k \leq q \), and all polynomials with degree \(\leq k - 1 \) over \(\mathbb{F}_q \).
- Each codeword is made by evaluating one of these polynomials with coefficients in \(\mathbb{F}_q \) at the nonzero elements of \(\mathbb{F}_q \).
- The nonzero elements can be written in terms of a primitive element for \(\mathbb{F}_q \), \(\alpha \), and are \(1, \alpha, \ldots, \alpha^{q-2} \).
- Let \(L_k \) be the \(\mathbb{F}_q \) vector space of polynomials of degree \(< k \) with coefficients in \(\mathbb{F}_q \).
- The linear evaluation mapping can be written as:

\[
\omega : L_k \rightarrow \mathbb{F}_q^{q-1}
\]
\[
f \mapsto (f(1), f(\alpha), \ldots, f(\alpha^{q-2})).
\]
Creating Reed-Solomon Codes

- We fix $n = q - 1$, an integer $k \leq q$, and all polynomials with degree $\leq k - 1$ over \mathbb{F}_q.
- Each codeword is made by evaluating one of these polynomials with coefficients in \mathbb{F}_q at the nonzero elements of \mathbb{F}_q.
- The nonzero elements can be written in terms of a primitive element for \mathbb{F}_q, α, and are $1, \alpha, \ldots, \alpha^{q-2}$.
- Let L_k be the \mathbb{F}_q vector space of polynomials of degree $< k$ with coefficients in \mathbb{F}_q.
- The linear evaluation mapping can be written as:
 \[
 \omega : L_k \rightarrow \mathbb{F}_q^{q-1}
 \]
 \[
 f \mapsto (f(1), f(\alpha), \ldots, f(\alpha^{q-2})).
 \]
- $\text{Im}(L_k)$ is denoted $RS(k, q)$.
Minimum Distance

- The minimum distance of $RS(k, q)$ is $d = q - k$.
Minimum Distance

- The minimum distance of $RS(k, q)$ is $d = q - k$.
- The Singleton bound is achieved for $RS(k, q)$ because
 \[k = n - d + 1 = (q - 1) - (q - k) + 1 = k. \]
Minimum Distance

- The minimum distance of $RS(k, q)$ is $d = q - k$.
- The Singleton bound is achieved for $RS(k, q)$ because $k = n - d + 1 = (q - 1) - (q - k) + 1 = k$.
- Every $RS(k, q)$ achieves the largest possible code minimum distance for this specific block length n.

Annie Cervin
Minimum Distance

- The minimum distance of $RS(k, q)$ is $d = q - k$.
- The Singleton bound is achieved for $RS(k, q)$ because
 \[k = n - d + 1 = (q - 1) - (q - k) + 1 = k. \]
- Every $RS(k, q)$ achieves the largest possible code minimum distance for this specific block length n.
- $RS(k, q)$ can correct codes up to τ where $\tau = \left\lfloor (n - k)/2 \right\rfloor$.
The codewords themselves can then be used to produce polynomials such as
\[(c_1, c_2, \ldots, c_n) \rightarrow c_1 + c_2 t + c_3 t^2 + \ldots + c_n t^{n-1}.

Theorem

The Reed-Solomon code $RS(k, q)$ *is a cyclic code over* \mathbb{F}_q. *It is generated by* $g(t) = (t - \alpha)(t - \alpha^2) \ldots (t - \alpha^{2\tau})$. *Its minimum distance is* $d = q - k = 2\tau + 1$.
Division Algorithm
The most common method uses division to achieve encoding.

- Take $c = (c_1, \ldots, c_k)$ and create
 \[m(t) = c_k t^{q-2} + \ldots + c_1 t^{q-k-1}. \]
Division Algorithm

The most common method uses division to achieve encoding.

- Take \(c = (c_1, \ldots, c_k) \) and create
 \[
 m(t) = c_k t^{q-2} + \ldots + c_1 t^{q-k-1}.
 \]

- Divide \(g(t) = (t - \alpha)(t - \alpha^2) \ldots (t - \alpha^{q-k-1}) \) into \(m(t) \)
 using the division algorithm. Thus, \(m(t) = q(t) \cdot g(t) + r(t) \).
Division Algorithm

The most common method uses division to achieve encoding.

- Take \(c = (c_1, \ldots, c_k) \) and create
 \[
 m(t) = c_k t^{q-2} + \ldots + c_1 t^{q-k-1}.
 \]

- Divide \(g(t) = (t - \alpha)(t - \alpha^2)\ldots (t - \alpha^{q-k-1}) \) into \(m(t) \) using the division algorithm. Thus, \(m(t) = q(t) \cdot g(t) + r(t) \).

- Form \(f(t) = q(t) \cdot g(t) = m(t) - r(t) \).
Division Algorithm

The most common method uses division to achieve encoding.

- Take \(c = (c_1, \ldots, c_k) \) and create
 \[
 m(t) = c_k t^{q-2} + \ldots + c_1 t^{q-k-1}.
 \]
- Divide \(g(t) = (t - \alpha)(t - \alpha^2) \ldots (t - \alpha^{q-k-1}) \) into \(m(t) \) using the division algorithm. Thus, \(m(t) = q(t) \cdot g(t) + r(t) \).
- Form \(f(t) = q(t) \cdot g(t) = m(t) - r(t) \).
- \(f(t) \) is a codeword because it is a multiple of the generator polynomial \(g(t) \). Transmit \(f(t) \).
Introduction

Unique decoding algorithms are constructed to return only one codeword from the received word.
Introduction

- Unique decoding algorithms are constructed to return only one codeword from the received word.

- Let a code C have minimum distance $d \geq 2\delta + 1$ and the weight of the error introduced by the channel be $\text{wt}(e) \leq \delta$.
Introduction

- Unique decoding algorithms are constructed to return only one codeword from the received word.
- Let a code C have minimum distance $d \geq 2\delta + 1$ and the weight of the error introduced by the channel be $\text{wt}(e) \leq \delta$.
- If an error occurs, the nearest neighbor will be the original word.
Introduction

- Unique decoding algorithms are constructed to return only one codeword from the received word.
- Let a code C have minimum distance $d \geq 2\delta + 1$ and the weight of the error introduced by the channel be $\text{wt}(e) \leq \delta$.
- If an error occurs, the nearest neighbor will be the original word.
- If, however, the error has $\text{wt}(e) > \delta$, a fail message will be returned.
Introduction

- Unique decoding algorithms are constructed to return only one codeword from the received word.
- Let a code C have minimum distance $d \geq 2\delta + 1$ and the weight of the error introduced by the channel be $wt(e) \leq \delta$.
- If an error occurs, the nearest neighbor will be the original word.
- If, however, the error has $wt(e) > \delta$, a fail message will be returned.
- There exists a unique decoding algorithm based on the Extended Euclidean Algorithm for the greatest common divisor and the combination of polynomials that gives you the greatest common divisor.
The Basics

- Introduced by Peter Elias in the 1950s.
The Basics

Introduced by Peter Elias in the 1950s.

Accept lists of size \(\leq L \) with a decoding radius \(T \), the decoder will return at most \(L \) codewords which are at most a distance \(T \) from the received word.
The Basics

- Introduced by Peter Elias in the 1950s.
- Accept lists of size \(\leq L \) with a decoding radius \(T \), the decoder will return at most \(L \) codewords which are at most a distance \(T \) from the received word.
- We focus on Sudan-Guruswami’s work from the late 1990s.
Polynomials in Two Variables

- The ring of polynomials in x, y with coefficients in a field K is denoted as $K[x, y]$.
Polynomials in Two Variables

- The ring of polynomials in x, y with coefficients in a field K is denoted as $K[x, y]$.
- $I = \langle x, y \rangle$ is a nonprincipal ideal in $K[x, y]$.
Polynomials in Two Variables

- The ring of polynomials in x, y with coefficients in a field K is denoted as $K[x, y]$.
- $I = \langle x, y \rangle$ is a nonprincipal ideal in $K[x, y]$.
- A monomial order $>$ in $K[x, y]$ is a relation on the set of monomials $\{x^a y^b | a, b \geq 0\} = \{x^\alpha | \alpha = (a, b)\}$.
Polynomials in Two Variables

- The ring of polynomials in x, y with coefficients in a field K is denoted as $K[x, y]$.
- $I = \langle x, y \rangle$ is a nonprincipal ideal in $K[x, y]$.
- A monomial order \succ in $K[x, y]$ is a relation on the set of monomials $\{x^a y^b | a, b \geq 0\} = \{x^\alpha | \alpha = (a, b)\}$.
- A specific type of monomial ordering is the lexicographic order. For $x \succ y$, $x^a y^b \succ_{\text{lex}} x^c y^d$ if $a > c$, or $a = c$ and $b > d$.
Polynomials in Two Variables

- The ring of polynomials in x, y with coefficients in a field K is denoted as $K[x, y]$.
- $I = \langle x, y \rangle$ is a nonprincipal ideal in $K[x, y]$.
- A monomial order $>$ in $K[x, y]$ is a relation on the set of monomials \(\{x^ay^b | a, b \geq 0\} = \{x^\alpha | \alpha = (a, b)\} \).
- A specific type of monomial ordering is the lexicographic order. For $x > y$, $x^ay^b >_{\text{lex}} x^cy^d$ if $a > c$, or $a = c$ and $b > d$.
- For example, in the weight order $>(1,3), \text{lex}$, if $a + 3b > c + 3d$ or $a + 3b = c + 3d$ then $x^ay^b >_{\text{lex}} x^cy^d$.

\(\text{Summary} \)
Polynomials in Two Variables

- The ring of polynomials in x, y with coefficients in a field K is denoted as $K[x, y]$.
- $I = \langle x, y \rangle$ is a nonprincipal ideal in $K[x, y]$.
- A monomial order $>$ in $K[x, y]$ is a relation on the set of monomials $\{x^a y^b | a, b \geq 0\} = \{x^\alpha | \alpha = (a, b)\}$.
- A specific type of monomial ordering is the lexicographic order. For $x > y$, $x^a y^b >_{\text{lex}} x^c y^d$ if $a > c$, or $a = c$ and $b > d$.
- For example, in the weight order $>(1,3), \text{lex}$, if $a + 3b > c + 3d$ or $a + 3b = c + 3d$ then $x^a y^b >_{\text{lex}} x^c y^d$.
- The following gives the monomials listed in increasing $(1, 3), \text{lex}$ order:

$1 < x < x^2 < y < x^3 < xy < x^4 < x^2y < x^5 < y^2 < x^3y < x^6 < \ldots$
Leading Term

Definition

*The leading term of a polynomial f with respect to a monomial order is the term of highest weighted degree in f. It is denoted as $\text{LT}_>(f)$.***
Weighted Degree

Given $v \geq 1$, the $(1, v)$-degree of $x^a y^b$ is $a \cdot 1 + b \cdot v = a + bv$.
Weighted Degree

- Given $v \geq 1$, the $(1, v)$-degree of $x^a y^b$ is $a \cdot 1 + b \cdot v = a + bv$.
- $C(v, l)$ is the number of monomials $x^a y^b$ with $(1, v)$-degree $\leq l$.

Proposition

$$C(v, l) = \left(\left\lfloor \frac{l}{v} \right\rfloor + 1\right) \left(l + 1 - \left\lfloor \frac{l}{v} \right\rfloor \cdot \frac{v}{2}\right)$$
Example

- Let’s look at the $x^a y^b$ that have (1, 4)-degree ≤ 6.
Example

- Let’s look at the $x^a y^b$ that have $(1, 4)$-degree ≤ 6.

\[
C(v, l) = C(4, 6) = \left(\left\lfloor \frac{6}{4} \right\rfloor + 1\right) \left(6 + 1 - \left\lfloor \frac{6}{4} \right\rfloor \cdot \frac{4}{2}\right)
\]
\[
= (1 + 1)(6 + 1 - 1 \cdot 2) = 10.
\]
Example

- Let’s look at the $x^a y^b$ that have $(1, 4)$-degree ≤ 6.

$$C(v, l) = C(4, 6) = \left(\left\lceil \frac{6}{4} \right\rceil + 1 \right) \left(6 + 1 - \left\lceil \frac{6}{4} \right\rceil \cdot \frac{4}{2} \right)$$

$$= (1 + 1)(6 + 1 - 1 \cdot 2) = 10.$$

Thus there are 10 monomials $x^a y^b$ with $(1, 4)$ degree ≤ 6.

Example

- Let’s look at the $x^a y^b$ that have $(1, 4)$-degree ≤ 6.

\[
C(v, l) = C(4, 6) = \left(\left\lfloor \frac{6}{4} \right\rfloor + 1 \right) \left(6 + 1 - \left\lfloor \frac{6}{4} \right\rfloor \cdot \frac{4}{2} \right) \\
= (1 + 1)(6 + 1 - 1 \cdot 2) = 10.
\]

- Thus there are 10 monomials $x^a y^b$ with $(1, 4)$ degree ≤ 6.
- These monomials are $1, x, x^2, x^3, x^4, x^5, x^6, y, xy$, and $x^2 y$.
Division for Polynomials in Two Variables

The division algorithm for polynomials in two variables works according to a monomial order. Given polynomials $f, f_1, \ldots, f_s \in K[x, y]$, using the division algorithm we can find

$$f = a_1 f_1 + \ldots + a_s f_s + r$$

where $\text{LT}(a_i f_i) \leq \text{LT}(f)$ for all i and $a_i, r \in K[x, y]$. Either the polynomial $r = 0$ or no term in r is divisible by any $\text{LT}(f_i)$.

Annie Cervin
Gröbner Basis

Definition

If I is an ideal in $K[x, y]$ and $>$ is a monomial order then a subset $G \subseteq I$ is a Gröbner basis for I with respect to $>$ if

$$\langle LT_>(g) \mid g \in G \rangle = \langle LT_>(f) \mid f \in I \rangle.$$

Theorem

Given an ideal I and a monomial order $>,$ there is a unique reduced Gröbner basis for I with respect to $>.$
List decoding algorithms have two steps: interpolation and factorization.
List decoding algorithms have two steps: interpolation and factorization.

Interpolation finds a minimal polynomial

\[Q(x, y) = a_L(x)y^L + a_{L-1}(x)y^{L-1} + \ldots + a_0(x) \]

such that

\[Q(\alpha^i, y_i) = 0 \text{ for all } i = 0, \ldots, q - 2. \]
List decoding algorithms have two steps: interpolation and factorization.

Interpolation finds a minimal polynomial
\[Q(x, y) = a_L(x)y^L + a_{L-1}(x)y^{L-1} + \ldots + a_0(x) \]
such that
\[Q(\alpha^i, y_i) = 0 \]
for all \(i = 0, \ldots, q - 2 \).

For every Reed-Solomon codeword within distance \(T \) of \(y \), factorization gives some \(y - f_i(x) \) with \(\deg(f_i) \leq k - 1 \) that divides \(Q(x, y) \). In other words, factoring gives
\[Q(x, y) = (y - f_1(x))(y - f_2(x)) \cdots (y - f_L(x)). \]
List decoding algorithms have two steps: interpolation and factorization.

Interpolation finds a minimal polynomial
\[Q(x, y) = a_L(x)y^L + a_{L-1}(x)y^{L-1} + \ldots + a_0(x) \]
such that
\[Q(\alpha^i, y_i) = 0 \text{ for all } i = 0, \ldots, q - 2. \]

For every Reed-Solomon codeword within distance \(T \) of \(y \), factorization gives some \(y - f_i(x) \) with \(\deg(f_i) \leq k - 1 \) that divides \(Q(x, y) \). In other words, factoring gives
\[Q(x, y) = (y - f_1(x))(y - f_2(x)) \cdots (y - f_L(x)). \]

The decoder returns \(ev(f_1), ev(f_2), \ldots, ev(f_L) \).
Definition

\(Q(x, y) \) has a zero of multiplicity at least \(m \) at \((\alpha^i, y_i)\) if

\[
Q(x, y) = \sum_{k, l \geq 0} c_{k, l} (x - \alpha^i)^k (y - y_i)^l
\]

and

\[
c_{0, 0} = c_{1, 0} = c_{0, 1} = \ldots = c_{k, l} = 0
\]

for all \(k, l \leq m - 1 \). \(Q(x, y) \) has a zero of multiplicity exactly \(m \) if \(c_{k, l} \neq 0 \) for some \(k, l \) with \(k + l = m \).
Theorem

Let $\phi_j(x, y)$ denote monomials of the form $x^a y^b$ listed in increasing order according to an arbitrary monomial order and

$$Q(x, y) = \sum_{j=0}^{C} a_j \phi_j(x, y).$$

Then a nonzero $Q(x, y)$ polynomial exists that interpolates the points (α^i, y_i) for $i = 1, 2, \ldots, n$ with multiplicity m at each point if

$$C = n\binom{m + 1}{2}.$$
Theorem

Let $K_m = \min\{K : C(k - 1, mK - 1)\} > \binom{m+1}{2} n$. Then if the following are satisfied:

\[
\begin{cases}
C(k - 1, l) > \binom{m+1}{2} n \\
mK_m > l \\
p(x) \text{ has degree } \leq k - 1 \\
y_i = p(\alpha^i) \text{ for at least } K_m \text{ different } i,
\end{cases}
\]

$Q(x, y)$ is divisible by $y - p(x)$.

Annie Cervin
Decoding Algorithms for Reed-Solomon Codes
Introduction

- Kwankyu Lee and Michael O’Sullivan introduced a new way to solve the interpolation step.
Introduction

- Kwankyu Lee and Michael O’Sullivan introduced a new way to solve the interpolation step.
- It finds the minimal polynomial of an ideal using Gröbner bases of modules.
Introduction

- Kwankyu Lee and Michael O’Sullivan introduced a new way to solve the interpolation step.
- It finds the minimal polynomial of an ideal using Gröbner bases of modules.
- It starts with a set of generators of the module induced from the ideal for the points \(\{ P_1, P_2, \ldots, P_n \} \) where \(P_i = (\alpha^i, y_i) \).
Introduction

- Kwankyu Lee and Michael O’Sullivan introduced a new way to solve the interpolation step.
- It finds the minimal polynomial of an ideal using Gröbner bases of modules.
- It starts with a set of generators of the module induced from the ideal for the points \(\{ P_1, P_2, \ldots, P_n \} \) where \(P_i = (\alpha^i, y_i) \).
- It then translates the generators to a Gröbner basis of the module.
Definition

$l_{v,m} \text{ is an ideal of all polynomials } p(x, y) \text{ in } \mathbb{F}_q[x, y] \text{ such that } p(x, y) \text{ vanishes to multiplicity } m \text{ at all } (\alpha_i, v_i)$.

Definition

$\mathbb{F}_q[x, y]_l \text{ is a free module over } \mathbb{F}_q[x] \text{ with basis } \{1, y, y^2, \ldots, y^l\}$. It can be written as

$$\mathbb{F}_q[x, y]_l = \{p(x, y) \mid \deg_y(p(x, y)) \leq l\}.$$

Monomials in this module are $x^i y^j$ with $i \geq 0$ and $0 \leq j \leq l$.

Definition

$l_{v, m, l} = l_{v, m} \cap \mathbb{F}_q[x, y]_l$.
The Algorithm

- We will use a set of generators of I_v, m, l.

The Algorithm

- We will use a set of generators of \(l_v, m, l \).
- It has input \(m, l \), and \(v = (v_1, v_2, \ldots, v_n) \) and monomial order \(>_{k-1} \).
The Algorithm

- We will use a set of generators of I_v, m, l.
- It has input m, l, and $v = (v_1, v_2, \ldots, v_n)$ and monomial order $>_k-1$.
- We will let $g_i = \sum_{j=0}^l a_{ij} y^j$ for $0 \leq i \leq l$.

Annie Cervin
Decoding Algorithms for Reed-Solomon Codes
This algorithm is creating a Gröbner basis \(\{g_0, g_1, \ldots, g_l\} \) of \(S \) such that \(\deg_y(LT(g_i)) = i \) for \(0 \leq i \leq l \). This algorithm begins with:

\[
g_0 = a_{00} \\
g_1 = a_{10} + a_{11}y \\
g_2 = a_{20} + a_{21}y + a_{22}y^2 \\
\vdots \\
g_l = a_{l0} + a_{l1}y + a_{l2}y^2 + \ldots + a_{11}y^l.
\]

The algorithm goes through the steps such that each time \(g_s \) and \(g_r \) are updated, \(\{g_0, g_1, \ldots, g_l\} \) still generates \(S \). It terminates when we have \(\deg_y(LT(g_i)) = i \) for \(0 \leq i \leq l \).
The FGLM Algorithm

- It takes an input of a Gröbner basis for a zero-dimensional ideal \(I \) and outputs another Gröbner basis for \(I \) for some other monomial order.
The FGLM Algorithm

- It takes an input of a Gröbner basis for a zero-dimensional ideal \(I \) and outputs another Gröbner basis for \(I \) for some other monomial order.

- We use the lex order as the new monomial order.
The FGLM Algorithm

- It takes an input of a Gröbner basis for a zero-dimensional ideal \(I \) and outputs another Gröbner basis for \(I \) for some other monomial order.
- We use the lex order as the new monomial order.
- \(\mathbb{F} \) is a field and \(R = \mathbb{F}[x_1, \ldots, x_n] \) is the ring of polynomials with \(n \) variables and coefficients in \(\mathbb{F} \).
The FGLM Algorithm

- It takes an input of a Gröbner basis for a zero-dimensional ideal I and outputs another Gröbner basis for I for some other monomial order.
- We use the lex order as the new monomial order.
- \mathbb{F} is a field and $R = \mathbb{F}[x_1, \ldots, x_n]$ is the ring of polynomials with n variables and coefficients in \mathbb{F}.
- A zero-dimensional ideal I is one such that

$$\dim_{\mathbb{F}} \mathbb{F}[x_1, \ldots, x_n]/I < \infty.$$
Remainder Arithmetic

- Dividing \(f \in R \) by \(G \) results in:

\[
 f = h_1 g_1 + \ldots + h_t g_t + \bar{f}^G.
\]
Remainder Arithmetic

- Dividing \(f \in R \) by \(G \) results in:

\[
f = h_1 g_1 + \ldots + h_t g_t + \tilde{f}^G.
\]

- \(\tilde{f}^G \) is a linear combination of the monomials \(x^\gamma \notin \langle LT(I) \rangle \) which is a basis for \(\mathbb{F}[x_1, \ldots, x_n]/I \).
Remainder Arithmetic

- Dividing \(f \in R \) by \(G \) results in:

\[
f = h_1 g_1 + \ldots + h_t g_t + \bar{f}^G.
\]

- \(\bar{f}^G \) is a linear combination of the monomials \(x^\gamma \notin \langle LT(I) \rangle \) which is a basis for \(\mathbb{F}[x_1, \ldots, x_n]/I \).

- Since \(G \) is a Gröbner basis, \(f \in I \) if and only if \(\bar{f}^G = 0 \).
The Code

- **Input:** The lex order and G_1, the Gröbner basis of the original monomial ordering.
The Code

- Input: The lex order and G_1, the Gröbner basis of the original monomial ordering.
- Algorithm updates a list $G_2 = \{g_1, \ldots, g_k\}$ where each g_i is an element of the ideal I.
The Code

- Input: The lex order and G_1, the Gröbner basis of the original monomial ordering.
- Algorithm updates a list $G_2 = \{g_1, \ldots, g_k\}$ where each g_i is an element of the ideal I.
- Algorithm updates B which is a list of monomials that is initially empty.
The Code

- **Input:** The lex order and G_1, the Gröbner basis of the original monomial ordering.
- **Algorithm updates a list** $G_2 = \{g_1, \ldots, g_k\}$ where each g_i is an element of the ideal I.
- **Algorithm updates** B which is a list of monomials that is initially empty.
- **Algorithm moves through a list of monomials of the form** x^γ that increase by lex order to create the new Gröbner basis.
The Code

1. Compute $\overline{x^\gamma}^G$.

2. If $\overline{x^\gamma}^G$ is linearly dependent of the monomials in B then add g to the list of G_2 as the last element.

3. If $\overline{x^\gamma}^G$ is linearly independent of the monomials in B then add x^γ to B as the last element.

4. End if the leading term of the last added polynomial g is a power of x_1 where x_1 is the greatest variable in our lex order.

5. Replace x^γ by the next monomial in lex order which is not divisible by any of the monomials $LT(g_i)$ for $g_i \in G_2$ and go back to Step 1.
We are applying a module version of the above algorithm to the Gröbner basis \(\{g_0, \ldots, g_l\} \) for \(I_v, m, l \) with Position over Term order and converting it to a \(> (l, k-1) \) order Gröbner basis for \(I_v, m, l \).
Theoretical Comparison

- We can compare both algorithms by calculating the upper bound of how many multiplication operations are needed.
Theoretical Comparison

- We can compare both algorithms by calculating the upper bound of how many multiplication operations are needed.
- If two polynomials of degree a and b are multiplied it requires $(a + 1)(b + 1)$ operations over \mathbb{F}.
Theoretical Comparison

- We can compare both algorithms by calculating the upper bound of how many multiplication operations are needed.
- If two polynomials of degree a and b are multiplied it requires $(a + 1)(b + 1)$ operations over \mathbb{F}.
- Big-O notation describes the behavior of a function when the variable tends to infinity.
Theoretical Comparison

- We can compare both algorithms by calculating the upper bound of how many multiplication operations are needed.
- If two polynomials of degree a and b are multiplied it requires $(a + 1)(b + 1)$ operations over \mathbb{F}.
- Big-O notation describes the behavior of a function when the variable tends to infinity.
- For example, if a function $f(n) = O(n^2)$, then $f(n) \leq cn^2$ for some constant c and all values of $n > n_0$.
Results

- The Lee-O’Sullivan algorithm requires

\[O(n^4 m^5) \]

multiplication operations.
Results

- The Lee-O’Sullivan algorithm requires
 \[O(n^4 m^5) \]
 multiplication operations.

- The FGLM algorithm has at most
 \[O(n^3 m^6) \]
 multiplication operations.
Results

- The Lee-O’Sullivan algorithm requires
 \[\mathcal{O}(n^4 m^5) \]
 multiplication operations.

- The FGLM algorithm has at most
 \[\mathcal{O}(n^3 m^6) \]
 multiplication operations.

- Then for those codes that have big \(n \) but the same \(m \), we expect that the FGLM algorithm is better. This corresponds to large fields with small \(m \).
Experimental Comparison

- We used the original procedure for the Lee-O'Sullivan algorithm and strived to optimize the FGLM algorithm.
Experimental Comparison

- We used the original procedure for the Lee-O'Sullivan algorithm and strived to optimize the FGLM algorithm.
- An error vector was randomly created and added to a randomly chosen codeword to create the received word.
Experimental Comparison

- We used the original procedure for the Lee-O'Sullivan algorithm and strived to optimize the FGLM algorithm.
- An error vector was randomly created and added to a randomly chosen codeword to create the received word.
- Since Maple times varied, we calculated the average of 10 run times of each algorithm.
Experimental Comparison

- We used the original procedure for the Lee-O'Sullivan algorithm and strived to optimize the FGLM algorithm.
- An error vector was randomly created and added to a randomly chosen codeword to create the received word.
- Since Maple times varied, we calculated the average of 10 run times of each algorithm.
- For fields smaller than \mathbb{F}_{11}, the Lee-O’Sullivan algorithm won every time.
Field of Size 11

<table>
<thead>
<tr>
<th>Run</th>
<th>Weight of error</th>
<th>Codewords</th>
<th>AVG FGLM</th>
<th>AVG L.O.</th>
<th>Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3.083</td>
<td>2.370</td>
<td>FGLM</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3.540</td>
<td>3.341</td>
<td>FGLM</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4.170</td>
<td>4.440</td>
<td>L.O.</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3.063</td>
<td>2.415</td>
<td>FGLM</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>4.052</td>
<td>3.445</td>
<td>FGLM</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1.931</td>
<td>2.528</td>
<td>L.O.</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>3.479</td>
<td>3.221</td>
<td>FGLM</td>
</tr>
</tbody>
</table>

Table: Comparison of Lee-O’Sullivan and FGLM algorithm for field of size $q=11$, multiplicity $m=4$, and lists of size $l=9$.
Field of Size 17

<table>
<thead>
<tr>
<th>Run</th>
<th>Weight of error</th>
<th>Codewords</th>
<th>AVG FGLM</th>
<th>AVG L.O.</th>
<th>Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
<td>6.358</td>
<td>6.524</td>
<td>L.O.</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>1</td>
<td>6.515</td>
<td>6.409</td>
<td>FGLM</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
<td>6.532</td>
<td>6.122</td>
<td>FGLM</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6.357</td>
<td>5.802</td>
<td>FGLM</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>3</td>
<td>6.552</td>
<td>6.133</td>
<td>FGLM</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>2</td>
<td>6.714</td>
<td>6.534</td>
<td>FGLM</td>
</tr>
</tbody>
</table>

Table: Comparison of Lee-O’Sullivan and FGLM algorithm for field of size $q=17$, multiplicity $m=3$, and lists of size $l=9$.
Summary

- Decoding algorithms are useful to correct errors.
Summary

- Decoding algorithms are useful to correct errors.
- When the size of the field is greater than \mathbb{F}_{11}, we expect that the FGLM algorithm will consistently be faster than the Lee-O’Sullivan algorithm.
Summary

- Decoding algorithms are useful to correct errors.
- When the size of the field is greater than F_{11}, we expect that the FGLM algorithm will consistently be faster than the Lee-O’Sullivan algorithm.
- If you are trying to decode received words from a smaller field, the Lee-O’Sullivan algorithm gives superior performance.
For Further Reading

