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The Definition And A First Example
Introduced by J. Hansen ∼ 1997 – elementary description:

Let P be an integral convex polytope in R
m, m ≥ 1.
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The Definition And A First Example
Introduced by J. Hansen ∼ 1997 – elementary description:

Let P be an integral convex polytope in R
m, m ≥ 1.

Points β in the finite set P ∩ Z
m correspond to monomials

xβ (multi-index notation)
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The Definition And A First Example
Introduced by J. Hansen ∼ 1997 – elementary description:

Let P be an integral convex polytope in R
m, m ≥ 1.

Points β in the finite set P ∩ Z
m correspond to monomials

xβ (multi-index notation)

Let LP = Span{xβ : β ∈ P ∩ Z
m}.
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The Definition And A First Example
Introduced by J. Hansen ∼ 1997 – elementary description:

Let P be an integral convex polytope in R
m, m ≥ 1.

Points β in the finite set P ∩ Z
m correspond to monomials

xβ (multi-index notation)

Let LP = Span{xβ : β ∈ P ∩ Z
m}.

Define

ev : LP → F
(q−1)m

q

f 7→ (f (γ) : γ ∈ (F ∗

q )m)

Image is the toric code CP(Fq).
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Codes from Polytopes

The Definition And A First Example
Introduced by J. Hansen ∼ 1997 – elementary description:

Let P be an integral convex polytope in R
m, m ≥ 1.

Points β in the finite set P ∩ Z
m correspond to monomials

xβ (multi-index notation)

Let LP = Span{xβ : β ∈ P ∩ Z
m}.

Define

ev : LP → F
(q−1)m

q

f 7→ (f (γ) : γ ∈ (F ∗

q )m)

Image is the toric code CP(Fq).

Example: RS(k , q) is the case P = [0, k − 1] ⊂ R since
LP = Span{1, x , . . . , xk−1}.
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Codes from Polytopes

Why Are They Interesting?

Have many properties parallel to RS codes, e.g. they are
“m-dimensional cyclic” codes (set of codewords is closed
under a large automorphism group).
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Codes from Polytopes

Why Are They Interesting?

Have many properties parallel to RS codes, e.g. they are
“m-dimensional cyclic” codes (set of codewords is closed
under a large automorphism group).

Computer searches by D. Joyner (USNA) showed that
some very good m = 2 toric codes exist (better than any
previously known codes in standard databases). A number
of other isolated very good examples found too.
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Codes from Polytopes

Why Are They Interesting?

Have many properties parallel to RS codes, e.g. they are
“m-dimensional cyclic” codes (set of codewords is closed
under a large automorphism group).

Computer searches by D. Joyner (USNA) showed that
some very good m = 2 toric codes exist (better than any
previously known codes in standard databases). A number
of other isolated very good examples found too.

(debatable, maybe!) Can apply lots of nice algebraic
geometry to study their properties (toric varieties,
intersection theory, line bundles, Riemann-Roch theorems)
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When Are Toric Codes Equivalent?
Usually take P ⊂ [0, q − 2]m ≃ (Zq−1)

m.

Theorem

If S = P ∩ Z
m and S′ = T (S) for some T = AGL(m, Zq−1), the

resulting evaluation code from S′ is monomially equivalent to
CP(Fq).

Note: S′ may not be P ′ ∩ Z
m for a convex polytope P ′.

(Monomial equivalence: There is an n × n permutation matrix Π
and an n × n invertible diagonal matrix Q such that G′ = GQΠ;
implies that parameters are the same.)
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Codes from Polytopes

Small Needles In Huge Haystacks!

For m = 3, q = 5, the generating function for the number of
AGL(3, Z4)-orbits on subsets of Z

3
4 of size k is:

1 + x + 2x2 + 4x3 + 16x4 + 37x5 +

147x6 + 498x7 + 2128x8 + 8790x9 +

39055x10 + 165885x11 +

678826x12 + 2584627x13 + · · ·
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Small Needles In Huge Haystacks!

For m = 3, q = 5, the generating function for the number of
AGL(3, Z4)-orbits on subsets of Z

3
4 of size k is:

1 + x + 2x2 + 4x3 + 16x4 + 37x5 +

147x6 + 498x7 + 2128x8 + 8790x9 +

39055x10 + 165885x11 +

678826x12 + 2584627x13 + · · ·

The “middle term” here is 333347580600x32.
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For m = 3, q = 5, the generating function for the number of
AGL(3, Z4)-orbits on subsets of Z
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1 + x + 2x2 + 4x3 + 16x4 + 37x5 +

147x6 + 498x7 + 2128x8 + 8790x9 +
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678826x12 + 2584627x13 + · · ·

The “middle term” here is 333347580600x32.

“Most” of these subsets give quite uninteresting codes.
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Codes from Polytopes

Small Needles In Huge Haystacks!

For m = 3, q = 5, the generating function for the number of
AGL(3, Z4)-orbits on subsets of Z

3
4 of size k is:

1 + x + 2x2 + 4x3 + 16x4 + 37x5 +

147x6 + 498x7 + 2128x8 + 8790x9 +

39055x10 + 165885x11 +

678826x12 + 2584627x13 + · · ·

The “middle term” here is 333347580600x32.

“Most” of these subsets give quite uninteresting codes.

But one of the 2128 orbits for k = 8 gives codes with
d = 42 (best previously known: d = 41 according to
Grassl’s table).
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Toric Codes And Toric Varieties

A polytope P specifies a normal fan Σ = ΣP , hence an
abstract toric variety X = XΣ.

John B. Little Toric Codes



Toric Code Basics
Tools From Algebraic Geometry

Higher-dimensional Polytopes and Vandermonde Matrices
Summary

Toric Varieties
An Example
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A polytope P specifies a normal fan Σ = ΣP , hence an
abstract toric variety X = XΣ.

Also get a line bundle L = LP on X specified by P.
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Toric Codes And Toric Varieties

A polytope P specifies a normal fan Σ = ΣP , hence an
abstract toric variety X = XΣ.

Also get a line bundle L = LP on X specified by P.

Subpolytopes Pi correspond to subspaces of H0(X ,L).
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Toric Codes And Toric Varieties

A polytope P specifies a normal fan Σ = ΣP , hence an
abstract toric variety X = XΣ.

Also get a line bundle L = LP on X specified by P.

Subpolytopes Pi correspond to subspaces of H0(X ,L).

In case m = 2, main results of L. and Schenck “Toric
surface codes and Minkowski sums” show that for q
sufficiently large, d(CP(Fq)) can be bounded above and
below by looking at subpolygons P ′ ⊆ P that decompose
as Minkowski sums.

John B. Little Toric Codes



Toric Code Basics
Tools From Algebraic Geometry

Higher-dimensional Polytopes and Vandermonde Matrices
Summary

Toric Varieties
An Example

The Lower Bound

Theorem
Let ℓ be the largest positive integer such that there is some
P ′ ⊆ P that decomposes as a Minkowski sum
P ′ = P1 + P2 + · · · + Pℓ with nontrivial Pi . For all q >> 0, there
is some P ′ ⊆ P of this form such that

d(CP(Fq)) ≥
ℓ

∑

i=1

d(CPi
(Fq)) − (ℓ − 1)(q − 1)2.

John B. Little Toric Codes



Toric Code Basics
Tools From Algebraic Geometry

Higher-dimensional Polytopes and Vandermonde Matrices
Summary

Toric Varieties
An Example

Intuition For Proof

Minkowski-decomposable subpolygons ⇔ reducible
sections f1f2 (Newton polygon of a product is the
Minkowski sum).
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Intuition For Proof

Minkowski-decomposable subpolygons ⇔ reducible
sections f1f2 (Newton polygon of a product is the
Minkowski sum).

Hasse-Weil upper and lower bounds for a curve Y :

q + 1 − 2g(Y )
√

q ≤ |Y (Fq)| ≤ q + 1 + 2g(Y )
√

q

⇒ when q > (a crude but explicit lower bound), reducible
curves with ℓ components must have more Fq-rational
points than those with m < ℓ components
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Intuition For Proof

Minkowski-decomposable subpolygons ⇔ reducible
sections f1f2 (Newton polygon of a product is the
Minkowski sum).

Hasse-Weil upper and lower bounds for a curve Y :

q + 1 − 2g(Y )
√

q ≤ |Y (Fq)| ≤ q + 1 + 2g(Y )
√

q

⇒ when q > (a crude but explicit lower bound), reducible
curves with ℓ components must have more Fq-rational
points than those with m < ℓ components

Bounds have been improved by Soprounov and
Soprounova.
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An Interesting Polygon
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Figure: The polygon P

P ⊂ [0, q − 2]2 for all
q ≥ 5.

P contains P ′ =
conv{(1, 0), (2, 0), (1, 2), (2, 2)}
(= P1 + P2 + P3, Pi line
segments) and P ′′ =
conv{(1, 0), (1, 1), (3, 2), (3, 3)}
(similar).

No other decomposable Q ⊂ P
with more than three Minkowski
summands

⇒ for q > #(P) + 3 = 12,

d(CP(Fq)) ≥ (q − 1)2 − 3(q − 1).
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Reducible Curves From P ′ we obtain
x(x − a)(y − b)(y − c) = 0. If a, b, c ∈ F

∗

q and b 6= c, then
3(q − 1) − 2 zeroes in (F ∗

q )2. Hence,

d(CP(Fq)) ≤ (q − 1)2 − 3(q − 1) + 2

and d(CP(Fq)) ≥ (q − 1)2 − 3(q − 1), q >> 0. Computations
using Magma show that

d(CP(F5)) = 6(∗) vs. 42 − 3 · 4 + 2 = 6

d(CP(F7)) = 20 vs. 62 − 3 · 6 + 2 = 20

d(CP(F8)) = 28 vs. 72 − 3 · 7 + 2 = 30

d(CP(F9)) = 42 vs. 82 − 3 · 8 + 2 = 42

d(CP(F11)) = 72 vs. 102 − 3 · 10 + 2 = 72

((∗) code over F5 is best known for n = 16, k = 9)
John B. Little Toric Codes
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More On q = 8 Where does a codeword with 49− 28 = 21 zero
entries come from? Magma: exactly 49 such words. One of
them comes, for instance, from the evaluation of

y + x3y3 + x2 ≡ y(1 + x3y2 + x2y6)

≡ y(1 + x3y2 + (x3y2)3)

Here congruences are mod 〈x7 − 1, y7 − 1〉, the ideal of the
F8-rational points of the 2-dimensional torus. So
1 + x3y2 + (x3y2)3 has exactly the same zeroes in (F ∗

8 )2 as
y + x3y3 + x2.
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Arithmetic Of F8 Matters Note: 1 + u + u3 is one of the two
irreducible polynomials of degree 3 in F2[u], hence

F8
∼= F2[u]/〈1 + u + u3〉.

If β is a root of 1 + u + u3 = 0 in F8, then 1 + x3y2 + (x3y2)3 =

(x3y2 − β)(x3y2 − β2)(x3y2 − β4)

and there are exactly 3 · 7 = 21 points in (F ∗

8 )2 where this is
zero. Still a sort of reducibility that produces a section with the
largest number of zeroes here, even though the reducibility only
appears when we look modulo the ideal 〈x7 − 1, y7 − 1〉 (!).
Similar phenomena in many other cases for small q.
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Motivation – Reed-Solomon Case
Square submatrices of the generator matrix G for a
Reed-Solomon code are usual (one-variable) Vandermonde
matrices:

V =











1 1 · · · 1
αj1 αj2 · · · αjk

...
...

. . .
...

(αj1)k−1 (αj2)k−1 · · · (αjk )k−1
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General Vandermondes

Let P be an integral convex polytope, and suppose
P ∩ Z

m = {e(i) : 1 ≤ i ≤ #(P)}.
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General Vandermondes

Let P be an integral convex polytope, and suppose
P ∩ Z

m = {e(i) : 1 ≤ i ≤ #(P)}.

Let S = {pj : 1 ≤ j ≤ #(P)} be any set of #(P) points in
(F ∗

q )m.
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General Vandermondes

Let P be an integral convex polytope, and suppose
P ∩ Z

m = {e(i) : 1 ≤ i ≤ #(P)}.

Let S = {pj : 1 ≤ j ≤ #(P)} be any set of #(P) points in
(F ∗

q )m.

Picking orderings, define V (P; S), the Vandermonde matrix
associated to P and S, to be the #(P) × #(P) matrix

V (P; S) =
(

pe(i)
j

)

,

where pe(i)
j is the value of the monomial xe(i) at the point

pj .
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An Example Let P = conv{(0, 0), (2, 0), (0, 2)} in R
2, and

S = {(xj , yj )} be any set of 6 points in (F ∗

q )2. For one particular
choice of ordering of the lattice points in P, we have V (P; S) =

















1 1 1 1 1 1
x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

x2
1 x2

2 x2
3 x2

4 x2
5 x2

6
x1y1 x2y2 x3y3 x4y4 x5y5 x6y6

y2
1 y2

2 y2
3 y2

4 y2
5 y2

6
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Minimum Distance Theorem From L., Schwarz, “Toric Codes
and Vandermonde Matrices”

Theorem

Let P ⊂ R
m be an integral convex polytope. Let d be a positive

integer and assume that in every set T ⊂ (F ∗

q )m with
|T | = (q − 1)m − (d − 1) there exists some S ⊂ T with
|S| = #(P) such that det V (P; S) 6= 0. Then the minimum
distance satisfies d(CP) ≥ d.

Proof: For all S, det V (P; S) 6= 0 ⇒ homogeneous linear
system has only the trivial solution so there are no nonzero
codewords with (q − 1)m − (d − 1) zero entries. Hence every
nonzero codeword has ≥ d nonzero entries.
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Codes From Simplices, etc.

Consider simplices of form Pℓ = Conv(ℓei : i = 1, . . . , m).
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Codes From Simplices, etc.

Consider simplices of form Pℓ = Conv(ℓei : i = 1, . . . , m).

Via a recursive determinant identity, det V (Pℓ; S) 6= 0 for
“simplicial configurations” of points S (essentially: sets of
points that look combinatorially like the lattice points in a
simplex of the same dimension, same ℓ)
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Codes From Simplices, etc.

Consider simplices of form Pℓ = Conv(ℓei : i = 1, . . . , m).

Via a recursive determinant identity, det V (Pℓ; S) 6= 0 for
“simplicial configurations” of points S (essentially: sets of
points that look combinatorially like the lattice points in a
simplex of the same dimension, same ℓ)

Such “simplicial configurations” exist in any T as before
with |T | = ℓ(q − 1)m + 1, so
d(CPℓ

) = (q − 1)m − ℓ(q − 1)m−1.
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Codes From Simplices, etc.

Consider simplices of form Pℓ = Conv(ℓei : i = 1, . . . , m).

Via a recursive determinant identity, det V (Pℓ; S) 6= 0 for
“simplicial configurations” of points S (essentially: sets of
points that look combinatorially like the lattice points in a
simplex of the same dimension, same ℓ)

Such “simplicial configurations” exist in any T as before
with |T | = ℓ(q − 1)m + 1, so
d(CPℓ

) = (q − 1)m − ℓ(q − 1)m−1.

Can do something very similar for paralellotopes.
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The Connection
Estimating d of a Toric Code

Codes From Simplices, etc.

Consider simplices of form Pℓ = Conv(ℓei : i = 1, . . . , m).

Via a recursive determinant identity, det V (Pℓ; S) 6= 0 for
“simplicial configurations” of points S (essentially: sets of
points that look combinatorially like the lattice points in a
simplex of the same dimension, same ℓ)

Such “simplicial configurations” exist in any T as before
with |T | = ℓ(q − 1)m + 1, so
d(CPℓ

) = (q − 1)m − ℓ(q − 1)m−1.

Can do something very similar for paralellotopes.

Also implies results for codes from many subpolytopes of
these.
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Summary

Toric codes are interesting and accessible (even for
undergraduate projects!)
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Summary

Toric codes are interesting and accessible (even for
undergraduate projects!)

But, the results on toric codes from simplices and
parallelotopes show that d is often quite small relative to k .

John B. Little Toric Codes



Toric Code Basics
Tools From Algebraic Geometry

Higher-dimensional Polytopes and Vandermonde Matrices
Summary

Summary

Toric codes are interesting and accessible (even for
undergraduate projects!)

But, the results on toric codes from simplices and
parallelotopes show that d is often quite small relative to k .

It is an interesting and apparently subtle problem to
determine criteria for polytopes (or subsets of the lattice
points in a polytope) that yield good evaluation codes.
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For Further Reading

J. Little and H. Schenck,
Toric Codes and Minkowski Sums
SIAM Journal of Discrete Mathematics 20 (2006),
999–1014.

J. Little and R. Schwarz,
Toric Codes and Vandermonde Matrices
AAECC 18 (2007), 349–367.
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