
College of the Holy Cross, Fall Semester, 2018
MATH 351, Solutions for Midterm 2

Friday, November 16

I. Let G = U(20) (where the operation is multiplication mod 20), and N = 〈9〉 in G.

(A) (5) How do you know is N a normal subgroup of G?

Solution: G is an abelian group, so every subgroup H in G is normal. This follows
since if g ∈ G, h ∈ H, then by commutativity ghg−1 = (gg−1)h = eh = h ∈ H.
Therefore H is normal.

(B) (20) Construct a group table for the factor (quotient) group G/N . To which
“standard” group is this isomorphic?

Solution: The subgroup N = {1, 9}. The distinct left cosets are N , 3N = {3, 27},
11N = {11, 9}, and 13N = {13, 17}. The group table is

N 3N 11N 13N
N N 3N 11N 13N
3N 3N N 13N 11N
11N 11N 13N N 3N
13N 13N 11N 3N N

For instance, by the definition of the coset product, 13N · 13N = 169N = 9N
since 169 ≡ 9 mod 20. However, 9 ∈ N , so 9N = N .

From the form of the table, the group G/N = U(20)/〈9〉 is non-cyclic of order
4, hence isomorphic to Z2 × Z2. This relies on Lemma 4.1, or the Fundamental
Theorem for finite abelian groups.

II. (A) (10) Let α : G → H be a group homomorphism. Show that ker(α) is a normal
subgroup of G.

Solution: By definition, ker(α) = {g ∈ G | α(g) = e} (the identity in H). We
always have α(e) = e for a group homomorphism, so e ∈ ker(α). Moreover, if
a, b ∈ ker(α), then

α(a−1b) = (α(a))−1α(b) = e−1e = e.

Hence a−1b ∈ ker(α). Since this is true for all a, b ∈ ker(α), we have shown ker(α)
is a subgroup of G. Finally, to show that ker(α) is normal in G, let g ∈ G and
a ∈ ker(α). Then

α(gag−1) = α(g)α(a)(α(g))−1 = α(g)e(α(g))−1 = e.

Hence gag−1 ∈ ker(α) whenever g ∈ G and a ∈ ker(a). By part 2 of Theorem 4.3,
this shows ker(α) is normal in G.
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(B) (10) State the First Isomorphism Theorem for groups.

Solution: Let α : G → H be a group homomorphism. Then G/ ker(α) ∼= α(G).
In words, the image of α (that is, the subgroup α(G) ⊆ H) is isomorphic as a
group to the factor group G/ ker(α)).

(C) (10) Let G = Z × Z and N = {(a, 2a) | a ∈ Z}. Using the First Isomorphism
Theorem, determine a group isomorphic to G/N .

Solution: Consider the mapping α : Z×Z→ Z defined by α(x, y) = y−2x. Then
α is a group homomorphism since

α(x+ x′, y + y′) = y + y′ − 2(x+ x′) = (y − 2x) + (y′ − 2x′) = α(x, y) + α(x′, y′).

The subgroup N is the kernel of this α since y − 2x = 0 if and only if (x, y) =
(x, 2x) ∈ N . Moreover α is clearly surjective since given any z ∈ Z, α(0, z) =
z − 2 · 0 = z. Therefore, the First Isomorphism Theorem says

(Z× Z)/N ∼= α(Z× Z) = Z.

III. Let G be a group of order 14.

(A) (15) Show that G contains elements of order 2 and elements of order 7. You may
use without proof any general facts we know that apply here.

Solution 1: If you recall Theorem 4.15 in the text, then you can use the fact that
every group of order 14 is isomorphic to either Z14 or D14 (the symmetries of a
regular heptagon). In Z14, |2| = 7 and |7| = 2, so we have elements of both order
2 and order 7. In D14, the rotation R370/7 has order 7 and the “flip” across any
symmetry line has order 2.

Solution 2: If you didn’t recall Theorem 4.15, you could still derive this, essentially
by repeating a portion of the proof of that theorem in this special case (possibly
taking things we showed later into account). If G is cyclic of order 14 with
generator a and |a| = 14, then G also has elements of both order 2 and order
7, since |a7| = 2 and |a2| = 7. If G is not cyclic, then by Lagrange’s theorem,
the orders of the non-identity elements of G can only be 2 or 7. If G has only
elements of order 1 and 2, then G must be abelian (Exercise 3.32, which we did
earlier). But then G would be an abelian 2-group and the order would be a power
of 2. Since 14 is not a power of 2, this case is impossible. Similarly, if G has only
elements of order 1 and 7, then since 7 is prime, any element of order 7 generates
a subgroup of order 7 which contains the identity and 6 elements of order 7. The
intersection of any two distinct subgroups of order 7 can contain only the identity.
Therefore, |G| would be congruent to 1 modulo 6. But 14 is not congruent to 1
mod 6. So this case also is impossible. G must contain both elements of order 2
and order 7.
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(B) (10) Still assuming G has order 14, any element a of order 7 generates a normal
subgroup. If b has order 2, determine all possibilities for bab = bab−1.

Solution: (This is one of the steps in the proof of Theorem 4.15 mentioned in
Solution 1 of the previous part.) We have 〈a〉 is normal in G since it has order
equal to half the order of G (Theorem 4.1). Hence bab = bab−1 must be an element
of 〈a〉, hence bab = ai for some i. Now we “do it” (i.e. conjugate by b) again.
Since b has order 2 in G,

a = b2ab2 = b(bab)b = baib = (bab)(bab) · · · (bab) = (bab)i = ai
2

.

This implies i2 ≡ 1 mod 7, so i = 1 or i = 6.

IV. (A) (10) Using the Fundamental Theorem, give a complete list of abelian groups of
order 72 up to isomorphism.

Solution: We have 72 = 23 · 32. Every abelian group of order 72 is isomorphic to
one of the following:

Z8 × Z9, Z8 × Z3 × Z3,

Z4 × Z2 × Z9, Z4 × Z2 × Z3 × Z3

Z2 × Z2 × Z2 × Z9, Z2 × Z2 × Z2 × Z3 × Z3.

(B) (5) Let G = Z4×Z18. To which group in your list from part (A) is G isomorphic?

Solution: Since 18 = 2 · 9 with gcd(2, 9) = 1, Z18
∼= Z2 × Z9. This says

Z4 × Z18
∼= Z4 × Z2 × Z9.

(C) (5) Let G = 〈a〉 be a cyclic group of order 72. Write a = b · c, where b is a
2-element of G and c is a 3-element of G.

Solution: a has order 72 = 8 · 9, so a9 has order 8 and a8 has order 9. The
2-subgroup is generated by a9 and the 3-subgroup is generated by a8. We get
a = (a9)k · (a8)` when 9k + 8` ≡ 1 mod 72. This holds when k = 1 and ` = 8. So
b = a9 and c = a64 = (a8)8.
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