College of the Holy Cross, Fall Semester, 2018
 MATH 351, Solutions for Midterm 2
 Friday, November 16

I. Let $G=U(20)($ where the operation is multiplication $\bmod 20)$, and $N=\langle 9\rangle$ in G.
(A) (5) How do you know is N a normal subgroup of G ?

Solution: G is an abelian group, so every subgroup H in G is normal. This follows since if $g \in G, h \in H$, then by commutativity $g h g^{-1}=\left(g g^{-1}\right) h=e h=h \in H$. Therefore H is normal.
(B) (20) Construct a group table for the factor (quotient) group G / N. To which "standard" group is this isomorphic?
Solution: The subgroup $N=\{1,9\}$. The distinct left cosets are $N, 3 N=\{3,27\}$, $11 N=\{11,9\}$, and $13 N=\{13,17\}$. The group table is

	N	$3 N$	$11 N$	$13 N$
N	N	$3 N$	$11 N$	$13 N$
$3 N$	$3 N$	N	$13 N$	$11 N$
$11 N$	$11 N$	$13 N$	N	$3 N$
$13 N$	$13 N$	$11 N$	$3 N$	N

For instance, by the definition of the coset product, $13 N \cdot 13 N=169 N=9 N$ since $169 \equiv 9 \bmod 20$. However, $9 \in N$, so $9 N=N$.
From the form of the table, the group $G / N=U(20) /\langle 9\rangle$ is non-cyclic of order 4 , hence isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. This relies on Lemma 4.1, or the Fundamental Theorem for finite abelian groups.
II. (A) (10) Let $\alpha: G \rightarrow H$ be a group homomorphism. Show that $\operatorname{ker}(\alpha)$ is a normal subgroup of G.

Solution: By definition, $\operatorname{ker}(\alpha)=\{g \in G \mid \alpha(g)=e\}$ (the identity in H). We always have $\alpha(e)=e$ for a group homomorphism, so $e \in \operatorname{ker}(\alpha)$. Moreover, if $a, b \in \operatorname{ker}(\alpha)$, then

$$
\alpha\left(a^{-1} b\right)=(\alpha(a))^{-1} \alpha(b)=e^{-1} e=e .
$$

Hence $a^{-1} b \in \operatorname{ker}(\alpha)$. Since this is true for all $a, b \in \operatorname{ker}(\alpha)$, we have shown $\operatorname{ker}(\alpha)$ is a subgroup of G. Finally, to show that $\operatorname{ker}(\alpha)$ is normal in G, let $g \in G$ and $a \in \operatorname{ker}(\alpha)$. Then

$$
\alpha\left(g a g^{-1}\right)=\alpha(g) \alpha(a)(\alpha(g))^{-1}=\alpha(g) e(\alpha(g))^{-1}=e .
$$

Hence $g a g^{-1} \in \operatorname{ker}(\alpha)$ whenever $g \in G$ and $a \in \operatorname{ker}(a)$. By part 2 of Theorem 4.3, this shows $\operatorname{ker}(\alpha)$ is normal in G.
(B) (10) State the First Isomorphism Theorem for groups.

Solution: Let $\alpha: G \rightarrow H$ be a group homomorphism. Then $G / \operatorname{ker}(\alpha) \cong \alpha(G)$. In words, the image of α (that is, the subgroup $\alpha(G) \subseteq H$) is isomorphic as a group to the factor group $G / \operatorname{ker}(\alpha))$.
(C) (10) Let $G=\mathbb{Z} \times \mathbb{Z}$ and $N=\{(a, 2 a) \mid a \in \mathbb{Z}\}$. Using the First Isomorphism Theorem, determine a group isomorphic to G / N.
Solution: Consider the mapping $\alpha: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\alpha(x, y)=y-2 x$. Then α is a group homomorphism since

$$
\alpha\left(x+x^{\prime}, y+y^{\prime}\right)=y+y^{\prime}-2\left(x+x^{\prime}\right)=(y-2 x)+\left(y^{\prime}-2 x^{\prime}\right)=\alpha(x, y)+\alpha\left(x^{\prime}, y^{\prime}\right)
$$

The subgroup N is the kernel of this α since $y-2 x=0$ if and only if $(x, y)=$ $(x, 2 x) \in N$. Moreover α is clearly surjective since given any $z \in \mathbb{Z}, \alpha(0, z)=$ $z-2 \cdot 0=z$. Therefore, the First Isomorphism Theorem says

$$
(\mathbb{Z} \times \mathbb{Z}) / N \cong \alpha(\mathbb{Z} \times \mathbb{Z})=\mathbb{Z}
$$

III. Let G be a group of order 14 .
(A) (15) Show that G contains elements of order 2 and elements of order 7. You may use without proof any general facts we know that apply here.
Solution 1: If you recall Theorem 4.15 in the text, then you can use the fact that every group of order 14 is isomorphic to either \mathbb{Z}_{14} or D_{14} (the symmetries of a regular heptagon). In $\mathbb{Z}_{14},|2|=7$ and $|7|=2$, so we have elements of both order 2 and order 7. In D_{14}, the rotation $R_{370 / 7}$ has order 7 and the "flip" across any symmetry line has order 2 .
Solution 2: If you didn't recall Theorem 4.15, you could still derive this, essentially by repeating a portion of the proof of that theorem in this special case (possibly taking things we showed later into account). If G is cyclic of order 14 with generator a and $|a|=14$, then G also has elements of both order 2 and order 7 , since $\left|a^{7}\right|=2$ and $\left|a^{2}\right|=7$. If G is not cyclic, then by Lagrange's theorem, the orders of the non-identity elements of G can only be 2 or 7 . If G has only elements of order 1 and 2, then G must be abelian (Exercise 3.32, which we did earlier). But then G would be an abelian 2-group and the order would be a power of 2 . Since 14 is not a power of 2 , this case is impossible. Similarly, if G has only elements of order 1 and 7 , then since 7 is prime, any element of order 7 generates a subgroup of order 7 which contains the identity and 6 elements of order 7 . The intersection of any two distinct subgroups of order 7 can contain only the identity. Therefore, $|G|$ would be congruent to 1 modulo 6 . But 14 is not congruent to 1 $\bmod 6$. So this case also is impossible. G must contain both elements of order 2 and order 7 .
(B) (10) Still assuming G has order 14, any element a of order 7 generates a normal subgroup. If b has order 2 , determine all possibilities for $b a b=b a b^{-1}$.
Solution: (This is one of the steps in the proof of Theorem 4.15 mentioned in Solution 1 of the previous part.) We have $\langle a\rangle$ is normal in G since it has order equal to half the order of G (Theorem 4.1). Hence $b a b=b a b^{-1}$ must be an element of $\langle a\rangle$, hence $b a b=a^{i}$ for some i. Now we "do it" (i.e. conjugate by b) again. Since b has order 2 in G,

$$
a=b^{2} a b^{2}=b(b a b) b=b a^{i} b=(b a b)(b a b) \cdots(b a b)=(b a b)^{i}=a^{i^{2}} .
$$

This implies $i^{2} \equiv 1 \bmod 7$, so $i=1$ or $i=6$.
IV. (A) (10) Using the Fundamental Theorem, give a complete list of abelian groups of order 72 up to isomorphism.
Solution: We have $72=2^{3} \cdot 3^{2}$. Every abelian group of order 72 is isomorphic to one of the following:

$$
\begin{aligned}
\mathbb{Z}_{8} \times \mathbb{Z}_{9}, & \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \\
\mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9}, & \mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \\
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9}, & \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}
\end{aligned}
$$

(B) (5) Let $G=\mathbb{Z}_{4} \times \mathbb{Z}_{18}$. To which group in your list from part (A) is G isomorphic?

Solution: Since $18=2 \cdot 9$ with $\operatorname{gcd}(2,9)=1, \mathbb{Z}_{18} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{9}$. This says

$$
\mathbb{Z}_{4} \times \mathbb{Z}_{18} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9}
$$

(C) (5) Let $G=\langle a\rangle$ be a cyclic group of order 72 . Write $a=b \cdot c$, where b is a 2 -element of G and c is a 3 -element of G.
Solution: a has order $72=8 \cdot 9$, so a^{9} has order 8 and a^{8} has order 9. The 2 -subgroup is generated by a^{9} and the 3 -subgroup is generated by a^{8}. We get $a=\left(a^{9}\right)^{k} \cdot\left(a^{8}\right)^{\ell}$ when $9 k+8 \ell \equiv 1 \bmod 72$. This holds when $k=1$ and $\ell=8$. So $b=a^{9}$ and $c=a^{64}=\left(a^{8}\right)^{8}$.

