College of the Holy Cross, Fall Semester, 2018
 MATH 351, Midterm 1 Solutions
 Thursday, October 4

I. Let $G=\mathrm{SL}(2, \mathbb{Z})$, the set of 2×2 integer matrices with determinant 1 , which is a group under the operation of matrix multiplication. Let

$$
H=\left\{\left.A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G \right\rvert\, b \equiv 0 \bmod 4\right\} .
$$

(A) (15) Is H a subgroup of G ? Why or why not?

Solution: H is a subgroup of G. Here's a proof. First, the identity element in G, namely the 2×2 identity matrix:

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

is in H since the upper right entry is $0 \equiv 0 \bmod 4$. Next if

$$
A=\left(\begin{array}{cc}
a & 4 k \\
c & d
\end{array}\right), \quad \text { and } \quad B=\left(\begin{array}{cc}
e & 4 \ell \\
f & g
\end{array}\right)
$$

are elements of H, then the product

$$
\begin{aligned}
A^{-1} B & =\left(\begin{array}{cc}
d & -4 k \\
-c & a
\end{array}\right)\left(\begin{array}{cc}
e & 4 \ell \\
f & g
\end{array}\right) \\
& =\left(\begin{array}{cc}
d e-4 k f & 4 l d-4 k g \\
-c e+a f & -4 \ell c+a g
\end{array}\right) .
\end{aligned}
$$

The upper right entry in the product is $4(l d-k g)$ and l, d, k, g are all integers, so this element is $\equiv 0 \bmod 4$. Hence $A^{-1} B \in H$ and H is a subgroup of G.
(B) (10) Compute this matrix product, noting that the left and right matrices are inverses of each other and the middle matrix is in H :

$$
\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 8 \\
1 & 9
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-3 & 2
\end{array}\right)
$$

What does the result tell you about the subgroup H ?
Solution: All the matrices are in G, since they are all integer matrices with determinant equal to 1 . The product is

$$
\left(\begin{array}{cc}
-69 & 47 \\
-116 & 79
\end{array}\right)
$$

Note that the upper right entry is $47 \equiv 3 \bmod 4$, not $0 \bmod 4$. Hence this product is not an element of H. It follows that H is not a normal subgroup of G.
II. (A) (15) Let $G=\langle a\rangle$ be a cyclic group. Prove that every subgroup of G is also cyclic. Solution: Let H be any subgroup of G. If $H=\left\{e=a^{0}\right\}$ then $H=\langle e\rangle$, so H is cyclic. Otherwise, let $a^{k} \in H$, where k is the smallest strictly positive power of a for which this holds. Since H is a subgroup, this means that every power of a^{k} is also in H, and hence $\left\langle a^{k}\right\rangle \subseteq H$. Now to show the other containment, every other element of H is in G, so it has the form a^{n} for some n. Use division in \mathbb{Z} to divide k into n. This means that we can write $n=q k+r$, where $0 \leq r<n$. Since $a^{n} \in H$ and $a^{k} \in H, a^{r}=a^{n} \cdot\left(a^{k}\right)^{-q} \in H$. But by the choice of k, this implies $r=0$ and $a^{r}=e$. Hence $a^{n}=\left(a^{k}\right)^{q} \in\left\langle a^{k}\right\rangle$. Hence since a^{n} was an arbitrary element of H, we also have $H \subseteq\left\langle a^{k}\right\rangle$. Therefore, $H=\left\langle a^{k}\right\rangle$ is cyclic. This is what we had to show.
(B) (5) In part (A), suppose that a has order 120. List all the integers that are orders of elements of G.
Solution: The orders are the divisors of 120:

$$
1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120
$$

(C) (10) Still assuming a has order 120, how many elements of G have order 24? What are they?
Solution: There are $\phi(24)$ of them. Since $24=2^{3} \cdot 3$, this number is $\phi(24)=2^{2} \cdot(2-$ $1) \cdot(3-1)=8$. To find them, recall that we want the a^{i} for which $\frac{120}{\operatorname{gcd}(120, i)}=24$, so $\operatorname{gcd}(120, i)=5$. The i that work are $i=5,25,35,55,65,85,95,115$.
III. (A) (10) Let H be a subgroup of a group G. Show that $a H=b H$ if and only if $a^{-1} b \in H$.
Solution: \Rightarrow : Suppose that $a H=b H$. Then for every $h \in H$ there exists $h^{\prime} \in H$ such that $a h=b h^{\prime}$. Multiplying by a^{-1} on the left and $h^{\prime-1}$ on the right we get $a^{-1} b=h\left(h^{\prime}\right)^{-1}$. Since H is a subgroup and $h, h^{\prime} \in H, h\left(h^{\prime}\right)^{-1} \in H$. Hence $a^{-1} b \in H$.
\Leftarrow : Suppose that $a^{-1} b \in H$. Then for all $h \in H$, we have $a^{-1} b h=h^{\prime} \in H$. Hence $b h=a h^{\prime}$. This implies $b H \subseteq a H$. Since the left cosets of H in G partition G, this implies that $b H=a H$. (Recall any two left cosets are either identical or disjoint.)
(B) (15) Let $G=S_{3}$ and let

$$
H=\left\langle\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)\right\rangle
$$

Find all of the left and right cosets of H in G.
Solution: The generator for H is an element of order 2 in S_{3}. Hence

$$
H=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)\right\} .
$$

Since $|G|=6$ and $|H|=2$, there are 3 left cosets and 3 right cosets. The distinct left cosets are

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) H=H \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) H=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)\right\} \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) H=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)\right\}
\end{aligned}
$$

The right cosets are computed similarly:

$$
\begin{aligned}
& H\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)=H \\
& H\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)\right\} \\
& H\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)\right\}
\end{aligned}
$$

IV. Let G be a group containing subgroups H and K with $|H|=28$ and $|K|=65$.
(A) (10) What is the smallest possible value for $|G|$?

Solution: By Lagrange's Theorem, $|G|$ must be divisible by both $28=2^{2} \cdot 7$ and $65=5 \cdot 13$. Since these two integers are relatively prime, $\operatorname{lcm}(28,65)=28 \cdot 65=$ 1820.
(B) (10) Show that $H \cap K=\{e\}$.

Solution: By Lagrange's Theorem again, the intersection $H \cap K$ is a subgroup of both H and K, so its order must divide both 28 and 65 . Since $\operatorname{gcd}(28,65)=1$, the intersection can contain only the identity element: $H \cap K=\{e\}$.

