
College of the Holy Cross, Fall Semester, 2018
MATH 351, Final Examination Solutions

Friday, December 14

I. Both parts of this question deal with SL(2,Z), the set of 2 × 2 integer matrices of
determinant 1, a group under matrix multiplication. Let

H =

{
A =

(
a b
c d

)
∈ SL(2,Z) : c ≡ 0 mod 5

}
.

(A) (*) (15) Is H a subgroup of SL(2,Z)? Why or why not?

Solution: The answer is yes. First, the identity matrix

(
1 0
0 1

)
(the identity

element in SL(2,Z) is in H since the element in the second row and first column

is 0 ≡ 0 mod 5. Next, if A =

(
a b
5k d

)
and B =

(
a′ b′

5k′ d′

)
are elements of H,

then the matrix product

AB =

(
a b
5k d

)
·
(
a′ b′

5k′ d′

)
=

(
aa′ + 5bk′ ab′ + bd′

5(ka′ + dk′) 5kb′ + dd′

)

has lower left entry divisible by 5. Finally, if A =

(
a b
5k d

)
is in H, then

A−1 =

(
d −b
−5k a

)
since det(A) = 1. This matrix is also in H, so H is a subgroup of SL(2,Z).

(B) (*) (15) Is the cyclic subgroup generated by

A =

(
1 0
5 1

)
in G finite or infinite? Explain.

Solution: It is easy to see, and easy to prove by induction, that

Ak =

(
1 0
5k 1

)

for all k ∈ Z. Since Ak =

(
1 0
0 1

)
only when k = 0, this shows that the matrix A

is an element of infinite order, and the cyclic subgroup generated by A is infinite.
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II. Let G = 〈a〉 be a cyclic group of order 100.

(A) (*) (10) How many different generators does G have?

Solution: The number is φ(100) (the Euler phi-function). Since 100 = 22 · 52,
φ(100) = 21 · (2− 1) · 51 · (5− 1) = 40. The generators themselves are the powers
ai where gcd(i, 100) = 1.

(B) (*) (10) What is the order of the element a30 in G?

Solution: The order is

|a30| = 100

gcd(100, 30)
=

100

10
= 10.

(Alternately, one could compute powers of a30 until an exponent divisible by 100
is obtained.)

(C) (*) (10) Suppose you know that a subgroup H of G contains both a30 and a56.
What can you say about the order of H?

Solution: We see gcd(30, 56) = 2. Moreover, because H is a subgroup of G,
repeating the steps of the Euclidean algorithm in the exponents, we find:

56 = 1 · 30 + 26⇒ a56 · a−30 = a26 ∈ H (1)

30 = 1 · 26 + 4⇒ a30 · a−26 = a4 ∈ H (2)

26 = 4 · 6 + 2⇒ a26 · a−24 = a2 ∈ H. (3)

Hence there are two possibilities: Either H is all of G and |H| = 100, or else
H = 〈a2〉, which says |H| = 50.

III. (A) (10) Let α : G → H be a group homomorphism. Show that α(G) is a subgroup
of H.

Solution: For all group homomorphisms α(eG) = eH . Hence eH ∈ α(G). If
c, d ∈ α(G), then c = α(a) and d = α(b) for some a, b ∈ G. Therefore, since α is
a group homomorphism,

c · d = α(a) · α(b) = α(a · b).

This shows c · d ∈ α(G). Finally, if c = α(a), then

c−1 = (α(a))−1 = α(a−1).

It follows that c−1 ∈ α(G). Therefore α(G) is a subgroup of H.

(B) (20) State and prove the First Isomorphism Theorem for groups.
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Solution: The First Isomorphism Theorem states that if α : G → H is a group
homomorphism, then the image α(G) is isomorphic as a group to G/ ker(α). To
prove this we will simplify the notation by writing ker(α) = N and consider the
mapping

φ : G/N −→ α(G)

gN 7−→ α(g)

Since this mapping is defined with domain a factor group, we need to start by
showing that it is well-defined. If the cosets gN and g′N are equal, though,
g−1g′ ∈ N and this implies α(g−1g′) = (α(g))−1α(g′) = eH . It follows that
α(g) = α(g′), so the mapping φ is well-defined. Next, we claim that φ is a group
homomorphism. This follows from the way the coset product is defined in the
factor group:

φ(gN · g′N) = φ((gg′)N) = α(gg′) = α(g) · α(g′) = φ(gN) · φ(g′N).

This shows φ is a gorup homomorphism. Since every element g in G yields some
coset of the kernel, every α(g) for g ∈ G is in the image of φ, so the mapping φ
is surjective. So, it remains to show that φ is injective. Suppose

φ(gN) = α(g) = α(g′) = φ(g′N).

This shows that
(α(g))−1 · α(g′) = α(g−1g′) = eH ,

so g−1g′ ∈ N , and we know that that implies the cosets of g and g′ are equal: gN =
g′N . Therefore φ is also injective, and we have shown that φ is an isomorphism
of groups, which is what we had to do.

IV. All parts of this question refer to the group G of order 8 whose (corrected!) operation
table is given below:

· g1 g2 g3 g4 g5 g6 g7 g8
g1 g1 g2 g3 g4 g5 g6 g7 g8
g2 g2 g5 g4 g7 g6 g1 g8 g3
g3 g3 g8 g5 g2 g7 g4 g1 g6
g4 g4 g3 g6 g5 g8 g7 g2 g1
g5 g5 g6 g7 g8 g1 g2 g3 g4
g6 g6 g1 g8 g3 g2 g5 g4 g7
g7 g7 g4 g1 g6 g3 g8 g5 g2
g8 g8 g7 g2 g1 g4 g3 g6 g5

(A) (*) (5) What is the inverse of the element g2?
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Solution: By inspection of the table, we see g1 is the identity element. Since
g2 · g6 = g6 · g2 = g1, the inverse of g2 is g6.

(B) (*) (5) What elements are in the subgroup 〈g3〉?
Solution: We see g23 = g5, g3 · g5 = g7 and g3 · g7 = g1. Therefore, g3 has order 4
and

〈g3〉 = {g1, g3, g5, g7}.

(C) (*) (5) Is the subgroup 〈g3〉 normal in G? Why or why not?

Solution: Since |〈g3〉| = 4 = 1
2
|G|, this subgroup is normal in G.

(D) (*) (5) What is the center of G, that is, the subgroup Z(G)?

Solution: By inspection of the table, the elements that commute with all elements
of G are g1 and g5. Therefore

Z(G) = {g1, g5}.

(E) (20) Construct the group table for the factor group G/Z(G). To which “standard”
group is this isomorphic?

Solution: The distinct left cosets of N = Z(G) are

N, g2N = {g2, g6}, g3N = {g3, g7}, g4N = {g4, g8}

The group table for the factor group is found using the usual coset product

· N g2N g3N g4N
N N g2N g3N g4N
g2N g2N N g4N g3N
g3N g3N g4N N g2N
g4N g4N g3N g2N N

This is a non-cyclic group of order 4, hence isomorphic to Z2 × Z2.

Note: This group of order 8 is isomorphic to the quaternion group, Q, the last of
the order 8 groups that we just “met” the last day of class. You didn’t need to
know that to do any part of this problem, though!

V. (A) (15) Up to isomorphism, how many different abelian groups of order 600 are there?
List one group from each isomorphism class.

Solution: Since 600 = 23 × 3 × 52, there are three possible structures for the 2-
subgroup, one for the 3-subgroup, and two for the 5-subgroup. By the fundamen-
tal theorem of finite abelian groups, the following list includes all the possibilities,
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up to isomorphism:

Z8 × Z3 × Z25

Z8 × Z3 × Z5 × Z5

Z4 × Z2 × Z3 × Z25

Z4 × Z2 × Z3 × Z5 × Z5

Z2 × Z2 × Z2 × Z3 × Z25

Z2 × Z2 × Z2 × Z3 × Z5 × Z5

(B) (15) Up to isomorphism, how many different groups of order 2018 are there? List
one group from each isomorphism class. (Hint: This is not a long list!)

Solution: Factoring we find 2018 = 2 ·1009, and 1009 is an odd prime. (This takes
some checking, but it is routine; you just have to check that none of the primes
3, 5, 7, 11, 13, 17, 19, 23, 29, 31 divides 1009. Those are the primes ≤

√
1009.) In

this situation we know that there are only two isomorphism classes of groups of
order 2p, namely, every group of order 2018 is isomorphic to either

Z2018 or D2018

(D2018 is the dihedral group of rotational and reflection symmetries of a regular
1009-gon, which would be hard to distinguish from a circle if you drew it – unless
the edges were made very long, of course!).

VI. (A) (20) Use the Sylow Theorems to show that there are no simple groups of order
100.

Solution: We have 100 = 22 · 52. By Sylow III, the number of Sylow 5-subgroups
must be congruent to 1 mod 5 and it must divide 4. The only possible number
is 1, and Sylow II implies that subgroup must be a normal subgroup of order 25.
Hence if |G| = 100, then G is not a simple group.

(B) (20) How many different Sylow 5-subgroups does the alternating group A5 have?

First Solution: The alternating group A5 has order 1
2
· 5! = 60. This factors as

60 = 22 · 3 · 5. The Sylow 5-subgroups must have order 5, and hence are cyclic
since 5 is prime. The only elements of order 5 in A5 (or S5) are the 5-cycles
(abcde), where {a, b, c, d, e} = {1, 2, 3, 4, 5}. There are 5!

5
= 24 distinct 5-cycles,

but groups of 4 of them generate the same subgroup since if σ is one of the
5-cycles, σ2, σ3, σ4 all generate the same subgroup as σ. Hence the number of
distinct Sylow 5-subgroups is 24

4
= 6. Note that this agrees with the statement of

Sylow III. The number of Sylow 5-subgroups in a group of order 60 is congruent
to 1 mod 5 and divides 12, hence is either 1 or 6.

Second Solution: (“sneaky”) By Sylow III, the number of Sylow 5-subgroups in
a group of order 60 is congruent to 1 mod 5 and divides 12, hence is either 1 or
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6. If there is just one Sylow 5-subgroups, then Sylow II implies that subgroup is
normal, of order 5. However, we know that A5 is a simple, nonabelian group, so
it has no normal subgroups other than {e} and A5. Therefore, the number must
be 6(!)
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