
College of the Holy Cross, Fall Semester, 2018
MATH 351, Modern Algebra I – Solution for Review Problem for Final Exam

November 29

Consider the following operation table:

· g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12
g1 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12
g2 g2 g1 g4 g3 g6 g5 g8 g7 g10 g9 g12 g11
g3 g3 g4 g7 g8 g11 g12 g1 g2 g5 g6 g9 g10
g4 g4 g3 g8 g7 g12 g11 g2 g1 g6 g5 g10 g9
g5 g5 g6 g9 g10 g1 g2 g11 g12 g3 g4 g7 g8
g6 g6 g5 g10 g9 g2 g1 g12 g11 g4 g3 g8 g7
g7 g7 g8 g1 g2 g9 g10 g3 g4 g11 g12 g5 g6
g8 g8 g7 g2 g1 g10 g9 g4 g3 g12 g11 g6 g5
g9 g9 g10 g11 g12 g7 g8 g5 g6 g1 g2 g3 g4
g10 g10 g9 g12 g11 g8 g7 g6 g5 g2 g1 g4 g3
g11 g11 g12 g5 g6 g3 g4 g9 g10 g7 g8 g1 g2
g12 g12 g11 g6 g5 g4 g3 g10 g9 g8 g7 g2 g1

You may assume without proof that this is the operation table for a group G of order 12.

a. (*) Which is the identity element in this group? Which element is the inverse of each
element? Is G abelian?

Solution: g1 is the identity element since g1 · gj = gj · g1 = gj for all j = 1, . . . , 12. We
have

g−1
1 = g1, g−1

2 = g2, g−1
3 = g7, g−1

4 = g8

g−1
5 = g5, g−1

6 = g6, g−1
7 = g3, g−1

8 = g4

g−1
9 = g9, g−1

10 = g10, g−1
11 = g11, g−1

12 = g12.

G is not abelian, since for example g4 · g9 = g6, but g9 · g4 = g12.

b. (*) What are the orders of each element in this group?

Solution: We have

|g1| = 1, |g2| = 2, |g3| = 3, |g4| = 6

|g5| = 2, |g6| = 2, |g7| = 3, |g8| = 6

|g9| = 2, |g10| = 2, |g11| = 2, |g12| = 2.

For example, to see |g4| = 6, compute from the table:

g24 = g7, g
3
4 = g4 · g7 = g2, g

4
4 = g4 · g2 = g3,
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then
g54 = g4 · g3 = g8, and g64 = g4 · g8 = g1 = e.

Hence the cyclic subgroup 〈g4〉 = {g1, g4, g7, g2, g3, g8}, which has order 6.

c. (*) Why is H = {g1, g2, g11, g12} a subgroup of G?

Solution: Probably the best way to see this is to pick out the entries from the table
for G in the rows and columns corresponding to these four elements. We find:

· g1 g2 g11 g12
g1 g1 g2 g11 g12
g2 g2 g1 g12 g11
g11 g11 g12 g1 g2
g12 g12 g11 g2 g1

This shows that e = g1 ∈ H, H is closed under products (only elements from H appear
in these entries in the table), and H is closed under taking inverses (since every element
in H is its own inverse). Hence H is a subgroup of G.

d. To which “standard” group of order 4 is H isomorphic?

Solution: H is a non-cyclic group of order 4, hence isomorphic to Z2 × Z2.

e. (*) Why is J = {g1, g3, g5, g7, g9, g11} a subgroup of G?

Solution: Proceed as in part c. Selecting the rows and columns corresponding to the
elements of J , we obtain:

· g1 g3 g5 g7 g9 g11
g1 g1 g3 g5 g7 g9 g11
g3 g3 g7 g11 g1 g5 g9
g5 g5 g9 g1 g11 g3 g7
g7 g7 g1 g9 g3 g11 g5
g9 g9 g11 g7 g5 g1 g3
g11 g11 g5 g3 g9 g7 g1

As in part c, the form of the table shows that J is a subgroup of G.

f. To which “standard” group of order 6 is J isomorphic?

Solution: J is nonabelian of order 6, since, for instance g5 · g11 = g7 but g11 · g5 = g3.
Hence J is isomorphic to D6 (which is also isomorphic to S3). Recall that any group
of order 2p, where p is an odd prime, is isomorphic to either Z2p (abelian), or to D2p

(nonabelian). That applies here since 6 = 2 · 3.

g. (*) Why is K = {g1, g3, g7} a subgroup of G?

2



Solution: Same idea as parts c and e. Alternately, by the calculations done above, you
can see that K = 〈g3〉 = 〈g7〉, so it’s the cyclic subgroup generated by an element.

h. (*) Which of the subgroups H, J,K from the previous parts is normal in G?

Solution: J must be normal in G, since it has |J | = 6 = 1
2
|G|. H is not normal in G.

We can see that because, for instance

g5 · g11 · g−1
5 = g7 · g5 = g9 /∈ H.

Finally, we claim K is normal in G. Here’s another way to check that, by looking at
the distinct left and right cosets.

g1K = g3K = g7K = K = Kg1 = Kg3 = Kg7

g2K = g4K = g8K = {g2, g4, g8} = Kg2 = Kg4 = Kg8

g5K = g9K = g11K = {g5, g9, g11} = Kg5 = Kg9 = Kg11

g6K = g10K = g12K = {g6, g10, g12} = Kg6 = Kg10 = Kg12.

i. For each subgroup that is normal in G from the previous part, construct the factor
group. (That is construct G/H if H is normal, G/J if J is normal in G, and G/K if
K is normal).

Solution: The normal subgroups are J and K. We have G/J is a group of order 2
consisting of the cosets J, g2J . The table looks like

· J g2J
J J g2J
g2J g2J J

Note that because of the way the coset product is defined,

(g2J) · (g2J) = (g2 · g2)J = g1J = J.

For the factor group G/K, let’s label the left cosets as K, g2K, g5K, g6K. Then the
table for the factor group looks like this:

· K g2K g5K g6K
K K g2K g5K g6K
g2K g2K K g6K g5K
g5K g5K g6K K g2K
g6K g6K g5K g2K K

(This is the non-cyclic group of order 4.)
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j. Construct a group homomorphism α : G → L for some group L to make ker(α) =
{g1, g2}. To which “standard” group of order 6 is L isomorphic? (Hint: To see how
to define α, you might note the way the whole table for G breaks up into 2× 2 blocks
according to the cosets of the subgroup {g1, g2}!)

Solution: This can be phrased in multiple ways. The “slickest” is to note how the table
for G breaks up into 2×2 blocks according to the cosets of the subgroup N = {g1, g2}.
Those cosets are:

N, g3N = {g3, g4} = Ng3, g5N = {g5, g6} = Ng5,

g7N = {g7, g8} = Ng7, g9N = {g9, g10} = Ng9, g11N = {g11, g12} = Ng11.

This shows that N is a normal subgroup of G. Hence the factor group L = G/N is
defined and the map α : G→ G/N taking gi ∈ G to giN ∈ L is a mapping as required
with ker(α) = N . (Note that if i is even, then giN is equal to one of the cosets above.
For instance g8N = {g8, g7} = g7N .)

k. Show that G is the internal direct product of its subgroups L = {g1, g2} and J =
{g1, g3, g5, g7, g9, g11}.

Solution: We know J is normal in G from part h above and we saw in part j that N
is normal in G. Moreover J ∩N = {g1} = {e}. Therefore the 12 products of elements
of J and N are all distinct and give all the elements in G: J · N = G. Therefore, by
definition G is the internal direct product of J and N . Recall that this means G is
also isomorphic to the external direct product J ×N ∼= D6 × Z2.

l. What is Z(G), the center of G? What is the centralizer of the element g2?

Solution: The center of G is the collection of elements commuting with all elements in
G. This means that in the table we’re looking for gi such that if you read across the
row for gi, then the elements are listed in the same order as they appear in the column
for gi. The elements of G for which this is true are g1, g2. Hence Z(G) = {g1, g2}. This
implies that the centralizer of g2 (the subgroup

C(g2) = {g ∈ G | g · g2 = g2 · g})

is all of G: C(g2) = G.

m. What are the conjugacy classes in G?

Solution: The elements of the center appear alone in separate conjugacy classes. Ele-
ments in any conjugacy class must have the same order, so the best way to organize this
is to look one order at a time. The two elements of order 6 (g4 and g8) are conjugate,
since for instance

g11 · g4 · g−1
11 = g6 · g11 = g8.

4



The two elements of order 3 (g3 and g7) are also conjugate, since for instance

g11 · g3 · g−1
11 = g5 · g11 = g7.

The remaining 6 elements of the group all have order 2. But they are not all conju-
gate since for instance if we look at the element g12, then its centralizer is C(g12) =
{g1, g2, g11, g12} which has order 4. This means that the conjugacy class of g12 contains
only [G : C(g12)] = 12/4 = 3 distinct elements:

{g12, g6, g10}

Similarly the class of g11 contains only 3 distinct elements (g11 has the same centralizer
as g12):

{g11, g5, g9}.

To summarize, G has

• Two classes of size 1 from the elements of the center: {g1}, {g2}
• One class consisting of the elements of order 6: {g4, g8}
• One class consisting of the elements of order 3: {g3, g7}, and

• Two classes of noncentral elements of order 2: {g5, g9, g11} and {g6, g10, g12}.

n. How many different Sylow 2-subgroups are there in G? How many different Sylow
3-subgroups? Verify that the statement of Sylow III holds here.

Solution: Since 12 = 22 · 3, any Sylow 3-subgroup must have order 3, hence be iso-
morphic to Z3. Since G contains only two elements of order 3 (g3 and g7), there is
exactly one Sylow 3-subgroup, namely the subgroup K = {g1, g3, g7} studied above.
(Note that it must be normal since there is only one!) The Sylow 2-subgroups must
be isomorphic to Z2×Z2 since G does not contain any elements of order 4. Each such
subgroup must contain 3 of the elements of order 2 and the ones in each subgroup
must commute among themselves. Note that the only pairs of the noncentral elements
of order 2 that do commute with each other are g5 and g6, g9 and g10, and g11 and g12.
Hence we get 3 Sylow 2-subgroups

{g1, g2, g5, g6}, {g1, g2, g9, g10}, {g1, g2, g11, g12}.

This all agrees with Sylow III since that theorem says the number of Sylow 3-subgroups
must be ≡ 1 mod 3 and divide 4, while the number of Sylow 2-subgroups must be
≡ 1 mod 2 and divide 3.

5


