# MATH 110-02 - Algebra Through History <br> The Tartaglia-Cardano Formula for Cubics 

November 11, 2019

## Background

We just saw that the formula Tartaglia found and Cardano printed in his Ars Magna can be written as follows. For the "cubes and roots equals numbers" case $x^{3}+p x=q$, (one) solution is

$$
x=\sqrt[3]{\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}+\sqrt[3]{\frac{q}{2}-\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}
$$

Tartaglia and Cardano would have been considering the case $p, q>0$ but we can see that the formula is actually valid when $p<0$ or $q<0$ as well(!)

## Questions

A. Use the formula to solve

$$
x^{3}+3 x=36
$$

with $p=3$ and $q=36$. Note: There is an "obvious" real solution $x=3$ here. Is it clear your answer is giving that same value??
B. What happens if you use the formula to solve:

$$
x^{3}-6 x-2=0
$$

where $p=-6$ and $q=2$ ? (There are actually 3 distinct real roots as you can see by plotting $y=x^{3}-6 x-2$ on a graphing calculator.)

