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Chapter 15

7. We must have 2%y = 3 from the volume constraint and 222 + 4zy = 7 from the surface area
constraint. Solving for z in the first equation, y = x% So then in the second equation 222 + f—f =1,
or 223 — 7z 4+ 12 = 0. By the rational roots test, the possible rational roots of this polynomial
equation are z = *+1,2,3,4,6,12, %, % But it is easy to check that none of these are roots. This
implies that f(z) = 223 — 7z + 12 is irreducible in Q[z]. Therefore, [Q(x) : Q] = 3, so z is not
constructible by Theorem 15.9 in the text, or the Corollary of the main theorem on constructible

numbers we stated in class: [Q(z) : Q] is not a power of 2.
8. Use Theorem 15.1. A segment of length v/3 can be constructed by this process:
e construct a semicircle of diameter 4 — call the end points A, B,

e erecting a perpendicular to the diameter at a point C' dividing the diameter into lengths
AC =1,CB =3 and

e find the intersection of D the perpendicular with the semicircle (see diagram on page 454 or
a slightly different diagram in the class notes).

Then given the segment CD of length /3, construct a circle with center C' and radius CD = /3.
This intersects the line containing the diameter of the semicircle at E, and AE = 14 /3. (There
are several other correct method here too.)

9. The answer is no. Call the sides of the triangle z,y (where z is the length of the two equal
sides). Then the perimeter is 2z + y = 8. Taking the side of length y as the base, and using the

Pythagorean theorem, the area is 1 = %y\ [x? — %, which implies, after squaring and rearranging,
42y — y* = 16.
Now from the perimeter equation, y = 8 — 2z, so
42°(8 — 2z)? — (8 — 2z)* = 16,

which implies
823 — 8022 + 2562 — 257 = 0.

This cubic is irreducible in Q[z], since it has no rational roots. Therefore, [Q(z) : Q] = 3, so z is
not a constructible number.

11. Consider the unit circle centered at (0,0). An angle of ¢ degrees is constructible if and only if
we can construct a line £ meeting the z-axis at an angle of ¢ degrees (measured counterclockwise



from the positive z-axis). That line intersects the unit circle at the points +(cos(t), sin(¢)). Hence
the angle is constructible if and only if cos(¢) is a constructible number by the definition (see page
453 in the text, or the class notes).

17. As given in the Hint, the case where C' is on the line L is done in the text. If C is not in
L, let D be any constructible point on L (there must be such points D since it is given that L is
constructible). Using the compass, construct the circle I' with center at C' and radius CD. The
circle T' intersects L either in

e Two points D, F, or
e In just one point D.

In the second case, L is tangent to I' at D, and we claim that the tangent L must be perpen-
dicular to the radius CD so we are done. This is a standard geometric fact; it can be proved most
easily by parametrizing the circle and computing the tangent line from the parametric equations.
(A strictly Euclidean proof without using the idea of reflection across the line C'D is more difficult,
though still possible!)

(Alternately, we can argue that any line must contain (at least) two distinct constructible points.
Therefore, there must be some point D such that the circle with radius CD is not tangent to L.)

In the first case, construct the circles I'1 with center D and radius DC, and I'y with center £
and radius FC. The circles I'; and I'ys meet at the constructible points C' and Q. We claim that
CQ L DE, so extending the line CQ gives the line we are looking for. First, we have CD = CE
since both are radii of the same circle. Similarly, CD = DQ and CE = EQ. This implies that
ACDE is isosceles, so ZCDE = ZCED. Similarly ZQDE = ZQED. Hence

/QDE+ /EDC = /QDC = /QEC = /QED + /DEC.

From this, we see that ACDQ@Q = ACEQ by the SAS congruence theorem. Call S the intersection
point of the lines DE and C'Q. By the triangle congruence ACDQ = ACEQ above, ZDCS =
ZECS. Thisimplies ADCS =2 AECS (by SAS again, since CD = CFE and CS is in both triangles).
Hence ZDSC and ZESC are right angles since they are equal and add up to a straight angle (i.e.
180°). Thus CQ L DE, which is what we wanted to show.

19. Let A be a constructible point not on the constructible line L. By Exercise 17, we can construct
a line M through A perpendicular to L. Then using the example from the text on page 451, we
can construct a line N passing through A that is perpendicular to M. Since the L and N are both
perpendicular to M, but they meet M at different points (one at A, one at a point different from
A), L and M must be parallel.

Section 11.1

2. Yes this is true. If {v1,...,v,} is a basis for K over F, then each a € K is uniquely a =
c1v1 + -+ + cpo, for ci,...,c, € F. Suppose ¢, are two F-automorphisms of K such that



¢(v;) = P(v;) for all4 =1,...,n. Then for each a € K,

dla) = Plcrvr + -+ + cpon)

cd(v1) + -+ cpdp(vy) since ¢ is an F-automorphism of K
at(vi) + -+ cpp(vy) by assumption

P(civ1 + -+ - + cpuy)  since 9 is an F-automorphism of K
_—

In other words, F-automorphisms are completely determined by their action on a basis of K over
F.

3. We are given that o € Galp(K), so o is an F-automorphism of K. If u € K satisfies o(u) = u,
then we claim that o(a) = a for all a € F(u). This will suffice to show that o € Galp(,)(K) since
by definition, elements of Galy(,)(K) are automorphisms of K fixing all the elements of F'(u). Now
we are given that [K : F] is finite. since F' C F(u) C K, by Theorem 10.4,

(K :F] = [K : F(w)][F(u) : F]

and hence [F(u) : F) is finite as well. Theorem 10.7 implies that if [F(u) : F] = n, then 1,u, ..., u""!
is a basis for F(u) over F. Hence if a € F(u), then a = ¢y + cyu +--- + ¢,_1u™ ! for some ¢; € F.
But then as in the previous exercise,

o(a) = oco+ecru+---+cuu™ )
= c¢g+co(u)+ -+ cu_1(o(u)” 1 since o is an F-automorphism of K

1

= ¢tcau+---+cu” " since o(u) = u

= a.
Thus o(a) = a for all a € F(u).
8. The mapping o : Q(v/2) — Q(v/2) defined by o(v/2) = —v/2 (that is

o(ao + a1vV2 + asV2 4 a3(V2)?) = ap — a1 V2 + V2 — a3(V2)?

is also an element of Galg(Q(+/2)). This is true since o fixes all ay € Q, and if @ = ag + a;v/2 +
a2 + a3(v/2)3 and b = by + b1 v/2 + bav/2 + b3(+/2)3, then

o((ag +bo) + (a1 + b1) V2 + (az + ba)VZ + (a3 + b3) (V2)

(a() + b()) — (a1 + bl)\yi + (a2 + bg)\/i - (a3 + bg)(%g

(ag — a1\4/§ + a2\/§ — a3(\4/§)3) + (bo — b1\4/§ + bg\/§ + b3(\4/§)3)
= o(a) +o(b).

ola+0b)



Moreover,

O'(ab) = 0O ((aobo + 2a1b3 + 2a2b2 + 2a3b1) + (a0b1 + a1b0 + 2a2b3 + 2a3b2)\4/§
3
+ (a()bg + agby + a1b; + 2@3[)3)\/5 + (aob3 + agby + a1bo + agbl)(% ))

= (aobo + 2a1b3 + 2a9by + 2a3b1) — (aobl + a1by + 2a9b3 + 2a3b2)\4/§

+(a0b2 + agbg + a1b1 + 2a3b3)\/§ - (a,()bg + asby + a1bs + a261)(\4/§3)
(ag — a1V2 + azvV2 — a3(v/2)?) - (bg — b1 V2 + bav/2 + b3(V2)?)
= o(a)o(b).

Therefore o is a Q-automorphism of Q(+v/2).

9. (a) Since 23 —1 = (z—1)(z? +z+1) in Q[z], the minimal polynomial of w = _1%“/5 isz?+z+1.
By the quadratic formula, the roots of this are

—1+4/3
.’E:f.

Taking the + sign gives w, the other root _1%“/5 equals w?,

(b) The Galois group Galg(Q(w)) = {id,0} where o(w) = w?. This is cyclic of order 2,

isomorphic to Zs. Note that by Theorem 11.3, every Q-automorphism of Q(w) takes w to either w

or to w?.



