$$
\begin{gathered}
\text { Mathematics } 351-\text { Abstract Algebra } 1 \\
\text { Solutions for Problem Set } 9 \\
\text { November } 9,2007
\end{gathered}
$$

Section 7.5 5. (a) \mathbb{Z}_{24} has order 24, so by Lagrange's Theorem, the possible orders of subgroups of \mathbb{Z}_{24} are $1,2,3,4,6,8,12,24$.
(b) S_{4} also has order $4!=24$, so the possible orders of the subgroups of S_{4} are the same as in part (a): $1,2,3,4,6,8,12,24$.
(c) Since $\left|D_{4}\right|=8$ and $\left|\mathbb{Z}_{10}\right|=10$, we have $\left|D_{4} \times \mathbb{Z}_{10}\right|=80$. Hence the possible orders of subgroups of this group are all the divisors of 80 : $1,2,4,5,8,10,16,20,40,80$.
6. (a) Let $G=(\mathbb{Z} \times \mathbb{Z},+)$, and let $H=\{(p a, b): a, b \in \mathbb{Z}\}$. Then H is a subgroup of G. There only finitely many distinct cosets, namely the cosets

$$
(0,0)+H,(1,0)+H, \ldots,(p-1,0)+H
$$

(see the solution for problem 12 from Section 6.3 from Problem Set 7). Hence $[G: H]=p$ is finite.
(b) Let G be the same group as in part (a), but now let $H=\{(0, b): b \in \mathbb{Z}\}$. The cosets $(a, 0)+H$ are all distinct. This follows since if $a \neq a^{\prime}$, then $(a, 0)-\left(a^{\prime}, 0\right)=\left(a-a^{\prime}, 0\right) \notin H$, so $(a, 0)+H \neq\left(a^{\prime}, 0\right)+H$. Hence $[G: H]$ is infinite in this example.
7. The smallest possible order for such a group G is the least common multiple of the integers $1,2, \ldots, 11,12$. Thinking of the prime factorizations, $2,3,4=2^{2}, 5,6=2 \cdot 3,7,8=2^{3}, 9=3^{2}$, $10=5 \cdot 2,11,12=2^{2} \cdot 3$, we see that the least common multiple will be

$$
N=2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11=27720
$$

8. The order n must satisfy $n<100$ and $25|n, 10| n$. This uniquely determines $n=50=\operatorname{lcm}(25,10)$.
9. We are given that H and K are subgroups of G with $|H|=|K|=p, p$ prime. Moreover $H \neq K$. We claim first that $H \cap K$ is a subgroup of H and of K. This follows since $H \cap K$ is not empty $(e \in H \cap K)$. Then $a, b \in H \cap K$ implies $a, b \in H$ and $a, b \in K$. Hence $a b^{-1} \in H$ and $a b^{-1} \in K$ since H and K are subgroups. Thus, $a b^{-1} \in H \cap K$, so $H \cap K$ is a subgroup of G. Now by Lagrange's theorem, $|H \cap K|$ divides $|H|=p$ and $|K|=p$. But p is assumed prime, so $|H \cap K|$ is either 1 or p. If $|H \cap K|=p$, then $H \cap K=H=K$. Since we know that $H \neq K$, though, this means that $|H \cap K|=1$. Hence $H \cap K=\{e\}$.
10. By the same fact we used in problem 9 above, $H \cap K$ is also a subgroup of G, hence of H and K as well. Then by Lagrange's theorem, we know that $|H \cap K|$ divides $|H|$ and $|K|$.
11. We will show first that G must be cyclic, and then deduce that the order of G must be prime. Since G has more than one element, let $a \in G$ be any element $a \neq e$. Then $\langle a\rangle$ is a subgroup of
G with more than one element. But by hypothesis, G has no non-proper subgroups. This implies that $\langle a\rangle=G$, so that G is a cyclic group. We claim next that G must be finite. This follows because if $G=\langle a\rangle$ was an infinite cyclic group, then G would contain proper subgroups like $\left\langle a^{2}\right\rangle$. This means that G is a finite cyclic group, so $G \simeq \mathbb{Z}_{n}$ for some $n>1$ (Theorem 7.18). Now we claim that n must be prime. If not, then $n=k m$ for some integers $k, m>1$. But then the order of a^{k} is $m<n$. This implies that $\left|\left\langle a^{k}\right\rangle\right|=m$. But then $1<m<n$ is the order of a subgroup of G, which contradicts the hypothesis that G has no non-proper subgroups.
12. The order is $30 / \operatorname{gcd}(4,30)=15$. This can be seen directly by computing the powers of a^{4} and using $a^{30}=e$:

$$
e, a^{4}, a^{8}, a^{12}, a^{16}, a^{20}, a^{24}, a^{28}, a^{32}=a^{2}, a^{6}, a^{10}, a^{14}, a^{18}, a^{22}, a^{26}, a^{30}=e
$$

This shows that the order of a^{4} is 15 , so $\left|\left\langle a^{4}\right\rangle\right|=15$ as well. Then the index of $\left\langle a^{4}\right\rangle$ in $\langle a\rangle$ is $|\langle a\rangle| /\left|\left\langle a^{4}\right\rangle\right|=30 / 15=2$.
19. If $|G|=p q$ with p, q primes, then the possible orders of subgroups of G are the divisors of $p q$, namely $1, p, q, p q$. The proper subgroups of G have order p or order q. Since both of these are primes, all the proper subgroups of G must be cyclic by Theorem 7.28.
24. We will show this by considering two cases. If $|G|=33$ and G has an element a of order 33 (that is, if G is cyclic), then G also has elements of order 3, such as $b=a^{11}$. (Note that

$$
\left.b=a^{11}, b^{2}=\left(a^{11}\right)^{2}=a^{22}, b^{3}=\left(a^{11}\right)^{3}=a^{33}=e .\right)
$$

Now assume that G is not cyclic (there are no elements of order 33 in G). By Lagrange's theorem, the possible orders of elements are $1,3,11$. Suppose that there are no elements of order 3 in G. We will show that this leads to a contradiction, as follows. If there are no elements of order 3, then every element other than e has order 11 . Since 11 is prime, by problem 9 above, if a, b are elements of order 11, then either $\langle a\rangle=\langle b\rangle$ or else $\langle a\rangle \cap\langle b\rangle=\{e\}$. Take any one element of order 11. We have 11 distinct elements of G in $\langle a\rangle$. Since there are 33 elements in G altogether, then there must be some $b \in G$ with $b \notin\langle a\rangle$. But as above, this implies $\langle a\rangle \cap\langle b\rangle=\{e\}$. This gives 10 additional elements in G in $\langle b\rangle$, but not in $\langle a\rangle$. However, $|G|=33$, so there are still elements in G not in $\langle a\rangle \cup\langle b\rangle$. Let c be any one such element. Then $\langle c\rangle \cap\langle a\rangle=\{e\}$ and $\langle c\rangle \cap\langle b\rangle=\{e\}$. Thus $\langle c\rangle$ contains 10 additional elements of G other than e. But we still have additional elements G since $|\langle a\rangle \cup\langle b\rangle \cup\langle c\rangle|=31$. However, now we get a contradiction, since if d is one of the elements of G not in the union of these three subgroups, then d must also have order 11. This is impossible since there are not 10 additional elements in G. Hence G must have some elements of order 3 .

Section 7.6

5. (a) G is clearly nonempty. Let $A=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ and $B=\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & d^{\prime}\end{array}\right)$ be elements in G. Then

$$
A B^{-1}=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
1 / a^{\prime} & -b^{\prime} /\left(a^{\prime} d^{\prime}\right) \\
0 & 1 / d^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
a / a^{\prime} & \left(a^{\prime} b-a b^{\prime}\right) /\left(a^{\prime} d^{\prime}\right) \\
0 & d / d^{\prime}
\end{array}\right) .
$$

Since $a d \neq 0$ and $a^{\prime} d^{\prime} \neq 0$, this matrix is also in G since $\left(a / a^{\prime}\right)\left(d / d^{\prime}\right)=(a d) /\left(a^{\prime} d^{\prime}\right) \neq 0$. This shows that G is a subgroup of $\mathrm{GL}(2, \mathbb{R})$, hence a group itself.

Next, Consider N. N is closed under products:

$$
\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & b^{\prime} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & b+b^{\prime} \\
0 & 1
\end{array}\right) \in N,
$$

and closed under inverses:

$$
\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & -b \\
0 & 1
\end{array}\right) \in N
$$

Hence N is a subgroup of G.
(b) If $A=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in G$ and $B=\left(\begin{array}{ll}1 & b^{\prime} \\ 0 & 1\end{array}\right) \in N$, then

$$
\begin{aligned}
A^{-1} B A & =\left(\begin{array}{cc}
1 / a & -b /(a d) \\
0 & 1 / d
\end{array}\right)\left(\left(\begin{array}{ll}
1 & b^{\prime} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\right) \\
& =\left(\begin{array}{cc}
1 / a & -b /(a d) \\
0 & 1 / d
\end{array}\right)\left(\begin{array}{cc}
a & b+b^{\prime} d \\
0 & d
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & \left(b^{\prime} d\right) / a \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

By definition, this is an element of N. By equivalent statement (2) in Theorem 7.34, this implies that N is a normal subgroup of G.
8. The group table for the quaternion group Q from problem 14 in Section 7.1 is:

	1	-1	i	$-i$	j	$-j$	k	$-k$
1	1	-1	i	$-i$	j	$-j$	k	$-k$
-1	-1	1	$-i$	i	$-j$	j	$-k$	k
i	i	$-i$	-1	1	k	$-k$	$-j$	j
$-i$	$-i$	i	1	-1	$-k$	k	j	$-j$
j	j	$-j$	$-k$	k	-1	1	i	$-i$
$-j$	$-j$	j	k	$-k$	1	-1	$-i$	i
k	k	$-k$	j	$-j$	$-i$	i	-1	1
$-k$	$-k$	k	$-j$	j	i	$-i$	1	-1

(a) The cyclic subgroups of Q are:

$$
\begin{aligned}
\langle 1\rangle & =\{1\} \\
\langle-1\rangle & =\{1,-1\} \\
\langle i\rangle & =\{1, i,-1,-i\}=\langle-i\rangle \\
\langle j\rangle & =\{1, j,-1,-j\}=\langle-j\rangle \\
\langle i\rangle & =\{1, k,-1,-k\}=\langle-k\rangle
\end{aligned}
$$

(b) The cyclic subgroups $\langle i\rangle,\langle j\rangle,\langle k\rangle$ are all normal by a result we proved in class, since they have order $4=8 / 2$. The other two cyclic subgroups are normal since $1,-1$ commute with all elements in Q, so $a H=H a$ if $H=\{1\}$ or $H=\{1,-1\}$.
16. First, $K \cap N$ is a subgroup of G by the argument given in the solution for problem 9 from Section 7.5 above. Now we will show that $K \cap N$ is a normal subgroup of G by using equivalent statement (2) from Theorem 7.34. Let $g \in K \cap N$ and $a \in G$. Then $g \in K$ and $g \in N$. Since K is normal in G, we have $a^{-1} g a \in K$. Similarly, since N is normal in $G, a^{-1} g a \in N$. Therefore $a^{-1} g a \in K \cap N$. It follows that $a^{-1}(K \cap N) a \subset K \cap N$, so $K \cap N$ is a normal subgroup of G.
17. We will prove that $N \cap K$ is normal in K using the equivalent statement (2) of Theorem 7.34. So let $g \in N \cap K$ and let $a \in K$. Then $a^{-1} g a \in K$ because $a, g \in K$ and K is a subgroup. On the other hand, $a^{-1} g a \in N$ since $g \in N, a \in K \subseteq G$, and N is a normal subgroup of G. Hence $a^{-1} g a \in N \cap K$ whenever $g \in N \cap K$ and $a \in K$. Therefore $N \cap K$ is a normal subgroup of K.
22. This follows from the fact proved in Linear Algebra that $f(A B)=\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=$ $f(A) f(B)$.
23. Let $A \in \mathrm{SL}(2, \mathbb{R})$, so $\operatorname{det}(A)=1$. If $B \in \mathrm{GL}(2, \mathbb{R})$ is an arbitrary invertible matrix, then by problem 22,

$$
\operatorname{det}\left(B^{-1} A B\right)=\frac{1}{\operatorname{det}(B)} \operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(A)=1
$$

Hence for all B,

$$
B^{-1} \mathrm{SL}(2, \mathbb{R}) B \subseteq \mathrm{SL}(2, \mathbb{R})
$$

Hence $\operatorname{SL}(2, \mathbb{R})$ is a normal subgroup of $G L(2, \mathbb{R})$ by Theorem 7.34 (equivalent statement (2)).

