Mathematics 243, section 3 – Algebraic Structures Problem Set 9 **due:** Friday, November 30

$`A\,'\,Section$

- 1. For each of the following values of n,
 - Find all distinct generators of the group $(\mathbb{Z}_n, +)$,
 - Find all subgroups of $(\mathbb{Z}_n, +)$ and their orders
 - Find all elements of $(\mathbb{Z}_n^{\times}, \cdot)$ and their orders (for the *multiplication operation* mod n now)

n = 13, 16, 30

(Use the "big theorem" on cyclic groups for as much of this as possible. It is not necessary to do a lot of computations in most cases.)

- 2. Let $\varphi : \mathbb{Z}_{18} \to \mathbb{Z}_9$ be defined by $\varphi([x]) = [3x]$.
 - (a) Verify that φ is a group homomorphism.
 - (b) Determine the kernel of φ .
 - (c) Determine the image of φ .

$`B' \ Section$

- 1. Let G be a group and consider the mapping $\varphi : G \to G$ defined by $\varphi(x) = x^{-1}$. Show that φ is always one-to-one and onto, but that φ is an isomorphism of groups if and only if G is an *abelian* group.
- 2. An *automorphism* of a group G is an isomorphism of groups $\varphi : G \to G$ (that is, the domain and the range are both the same group G).
 - (a) Let $A = \{a, b, c\}$ and $G = \mathcal{S}(A)$ be the group of permutations of A. Show that $\varphi : G \to G$ defined by $\varphi(f) = R_a \circ f \circ R_a$ is an automorphism of G.
 - (b) Show that the collection of all automorphisms of a general group G is itself a group under the operation of function composition.
 - (c) Show if G is a general group and $g \in G$, then the conjugation mapping defined by $\varphi_g(x) = gxg^{-1}$ is an automorphism of G. (Note that the example in part (a) has this form.)
 - (d) Show that the collection of φ_g for all $g \in G$ (as in part (c)) is a *subgroup* of the group of automorphisms of G.

- 3. We can consider isomorphism of groups as a relation on the collection of all groups: $GRH \Leftrightarrow$ there exists an isomorphism $\varphi: G \to H$. Show that isomorphism of groups is an *equivalence* relation on the collection of all groups.
- 4. Let $G = \langle a \rangle$ be a cyclic group and let $\varphi : G \to H$ be a group homomorphism. Show that if we know the one element $\varphi(a)$, then we know where φ maps every element of G.