Mathematics 243, section 3 - Algebraic Structures

Problem Set 8
due: Friday, November 16

'A'Section

1. Consider the 2×2 matrices I_{2}, S, X, Y, D, T defined by

$$
\begin{aligned}
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), & S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
X=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), & Y=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
D=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), & T=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

Let $G=\left\{I_{2}, S, S^{2}, S^{3}, X, Y, D, T\right\}$. Construct the operation table for matrix multiplication on this set and verify that G is a group under this operation.
2. a. Let $G=\mathbb{Z}_{12}$ under the operation of addition modulo 12. Determine the cyclic subgroups $\langle[a]\rangle$ for all $[a] \in \mathbb{Z}_{12}$.
b. Conjecture a general formula for the number of elements in $\langle[a]\rangle$ in terms of the integers a and 12 . Check out your conjecture on the corresponding list of cyclic subgroups of \mathbb{Z}_{20} constructed in class on November 14.

' B ' Section

1. Let

$$
G=\left\{\left.\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

Show that G is a group under the operation of matrix addition.
2. Let

$$
G=\left\{\left.\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

Is G is a group under the operation of matrix multiplication. If so, say why; if not say which properties in the definition fail.
3. Let G be a group, and consider the relation R on G defined by $x R y \leftrightarrow y=a x a^{-1}$ for some $a \in G$. (If $x R y$ is true, the a that works in the equation will depend on x, y.) R is called the conjugacy relation on G.
a. Show that conjugacy is an equivalence relation on G.
b. Show that G is an abelian group if and only if the equivalence classes for the conjugacy relation satisfy $[x]=\{x\}$ for all $x \in G$.
c. More generally, show that if $[x]=\{x\}$ for some element $x \in G$, then $x a=a x$ for all $a \in G$ and conversely. The set of such elements x is called the center of G : The center is the subset of G defined by:

$$
Z(G)=\{x \in G \mid x a=a x \text { for all a in } G\}
$$

d. Show that the center of G (as defined in part c) is a subgroup of G.
e. Let $x \in G$ be a fixed element and define $C_{x}=\left\{a \in G \mid x=a x a^{-1}\right\}$. Show that C_{x} is a subgroup of G (C_{x} is called the centralizer of $\left.x\right)$.
f. Let $G=\mathcal{S}(A)$ be the group of permutations of $A=\{a, b, c\}$. Using the names for the elements of this group we introduced in Problem Set 3, find all of the equivalence classes for the conjugacy relation on G (there are three of them), determine the centralizer of each element of G, and the center of G. How are the sizes of the equivalence class of x and the number of elements of the centralizer of x related in each case?
4. Let H and K be subgroups of a group G.
a. Show that $H \cap K$ is also subgroup of G.
b. Find an example where $H \cup K$ is a subgroup of G and one where $H \cup K$ is not a subgroup of G.

