Mathematics 243, section 3 – Algebraic Structures Problem Set 7 **due:** Friday, November 9

A' Section

- 1. If we are using an affine cypher and we want to include *more symbols* in our plaintext messages than just the capital letters and a blank space as in the examples we did in class, then we can do that by increasing the modulus m for the numerical form of our plain and cypher text. For this problem, say we want to include the letters A, B, C, \ldots, Z , the space , and the apostrophe, comma, period, and question mark. Then we can use \mathbb{Z}_{31} as the numerical form of our alphabet, and make $A \leftrightarrow 0, B \leftrightarrow 1, \ldots, Z \leftrightarrow 25$, the space be 26, the apostrophe be 27, the comma be 28, the period be 29, and the question mark be 30.
 - a. Use the affine encryption function $f(x) = 7x + 20 \pmod{31}$ to encrypt the plaintext message "Are we on for today?" Give the cyphertext in literal form (using the same alphabet).
 - b. What is the decryption function $g = f^{-1}$ for this f?
 - c. Use the decryption function to decrypt the cyphertext "SZQOQDUSW." (Note: the period at the end *is part of the cypher text.*)
- 2. Suppose an RSA public key cryptosystem has $m = 7 \cdot 11 = 77$, and an encryption exponent e = 7 is used. Use the 27-letter alphabet (space = 0). from our examples in class and two-digit blocks.
 - a. Encrypt the plaintext message "GO FOR IT" using this system (Note: the cyphertext will be in numerical, not literal form.)
 - b. What is the ("secret") decryption exponent d for this system?
 - c. Use it to decrypt the cyphertext: "42, 71, 23, 1, 53, 10, 71, 68, 47" (Why didn't I actually include spaces between the words here?)

B' Section

The Euler ϕ -function (or totient) is defined for n > 0 in \mathbb{Z} by $\phi(n) =$ the number of classes [a] in \mathbb{Z}_n for which a multiplicative inverse exists in \mathbb{Z}_n (this is the same as the number of a with $0 \le a < n$ and gcd(a, n) = 1).

- 1. Find $\phi(11)$, $\phi(16)$, and $\phi(20)$.
- 2. Prove that the number of ordered pairs (a, b) for which $f(x) = ax + b \pmod{n}$ defines an invertible affine encryption function on \mathbb{Z}_n is $n \cdot \phi(n)$.
- 3. Show that the set of affine encryption functions is closed under composition.

- 4. If n = pq where p, q are distinct primes, prove that $\phi(n) = (p-1)(q-1)$.
- 5. If $n = p^e$ where p is prime and $e \ge 1$, then show $\phi(n) = p^e p^{e-1} = p^{e-1}(p-1)$.