Mathematics 243, section 3 - Algebraic Structures
 Problem Set 7
 due: Friday, November 9

'A'Section

1. If we are using an affine cypher and we want to include more symbols in our plaintext messages than just the capital letters and a blank space as in the examples we did in class, then we can do that by increasing the modulus m for the numerical form of our plain and cypher text. For this problem, say we want to include the letters A, B, C, \ldots, Z, the space , and the apostrophe, comma, period, and question mark. Then we can use \mathbb{Z}_{31} as the numerical form of our alphabet, and make $A \leftrightarrow 0, B \leftrightarrow 1, \ldots, Z \leftrightarrow 25$, the space be 26 , the apostrophe be 27 , the comma be 28 , the period be 29 , and the question mark be 30 .
a. Use the affine encryption function $f(x)=7 x+20(\bmod 31)$ to encrypt the plaintext message "Are we on for today?" Give the cyphertext in literal form (using the same alphabet).
b. What is the decryption function $g=f^{-1}$ for this f ?
c. Use the decryption function to decrypt the cyphertext "SZQOQDUSW." (Note: the period at the end is part of the cypher text.)
2. Suppose an RSA public key cryptosystem has $m=7 \cdot 11=77$, and an encryption exponent $e=7$ is used. Use the 27-letter alphabet (space $=0$). from our examples in class and two-digit blocks.
a. Encrypt the plaintext message "GO FOR IT" using this system (Note: the cyphertext will be in numerical, not literal form.)
b. What is the ("secret") decryption exponent d for this system?
c. Use it to decrypt the cyphertext: " $42,71,23,1,53,10,71,68,47 "$ (Why didn't I actually include spaces between the words here?)

' B ' Section

The Euler ϕ-function (or totient) is defined for $n>0$ in \mathbb{Z} by $\phi(n)=$ the number of classes $[a]$ in \mathbb{Z}_{n} for which a multiplicative inverse exists in \mathbb{Z}_{n} (this is the same as the number of a with $0 \leq a<n$ and $\operatorname{gcd}(a, n)=1)$.

1. Find $\phi(11), \phi(16)$, and $\phi(20)$.
2. Prove that the number of ordered pairs (a, b) for which $f(x)=a x+b(\bmod n)$ defines an invertible affine encryption function on \mathbb{Z}_{n} is $n \cdot \phi(n)$.
3. Show that the set of affine encryption functions is closed under composition.
4. If $n=p q$ where p, q are distinct primes, prove that $\phi(n)=(p-1)(q-1)$.
5. If $n=p^{e}$ where p is prime and $e \geq 1$, then show $\phi(n)=p^{e}-p^{e-1}=p^{e-1}(p-1)$.
