Mathematics 243, section 3 - Algebraic Structures

Problem Set 5
due: October 19, 2012

' A ' Section

1. Apply the division algorithm to find q, r satisfying $a=q b+r$ and $0 \leq r<b$:
a. $a=326, b=17$
b. $a=1245, b=249$
c. $a=-3432, b=29$
2. a. Find all the positive common divisors of $a=240$ and $b=450$. (Hint: Factoring a, b as much as possible may be helpful here.)
b. What is the smallest positive element of the set

$$
S=\{240 m+450 n \mid m, n \in \mathbb{Z}\} ?
$$

c. Apply the Euclidean algorithm to find $\operatorname{gcd}(240,450)$. What are the integers m, n such that $240 m+450 n=\operatorname{gcd}(240,450)$?
3. Repeat all the parts of question 2 for $a=2312$ and $b=584$.

' B ' Section

1. Let f, g, h be permutations of a set A. In this problem, the notation $h^{0}=I_{A}$, the identity mapping on A, and for $n \geq 1, h^{n}$ means the n-fold composition of h with itself:

$$
h^{n}=h \circ h \circ \cdots \circ h \quad(n \text { copies of } h) .
$$

a. Show by mathematical induction that h^{n} is a permutation of A for all $n \geq 0$. You may use facts we proved before here; look back at Chapter 1 or your notes as necessary.
b. Show that for all $n \geq 1$

$$
\left(f \circ g \circ f^{-1}\right)^{n}=f \circ g^{n} \circ f^{-1} .
$$

2. Let $a, b, c, d \in \mathbb{Z}$.
a. Show that if $a \mid c$ and $b \mid d$, then $(a b) \mid(c d)$.
b. Is it true that $a \mid(b c)$ implies $a \mid b$ or $a \mid c$? Prove or give a counterexample.
c. Give two different proofs that $(a-b) \mid\left(a^{n}-b^{n}\right)$ for all $n \geq 1$, one using mathematical induction, one not using mathematical induction.
d. Show that $(a+b) \mid\left(a^{2 n}-b^{2 n}\right)$ for all $n \geq 1$.
3. Suppose $a, b>0$ and $a=q b+r$ by the division algorithm in \mathbb{Z}. What are the quotient and remainder on division of $-a$ by b ? Express in terms of q and r, and prove your result.
4. Show that if $a, b, c \in \mathbb{Z}$, then $\operatorname{gcd}(\operatorname{gcd}(a, b), c)=\operatorname{gcd}(a, \operatorname{gcd}(b, c))$.
5. Suppose $\operatorname{gcd}(a, b)=1$. Is it true that the integers m, n such that $m a+n b=1$ guaranteed in Theorem 2.12 also satisfy $\operatorname{gcd}(m, n)=1$? Prove or give a counterexample.
