
Mathematics 243, section 3 – Algebraic Structures
Problem Set 4

due: October 5, 2012

‘A’ Section

1. Consider the following relations defined on the set Z. In each case, say whether the relation
is reflexive, symmetric, transitive. Justify your answers.

a. xRy if and only if (−1)x = (−1)y

b. xRy if and only if x · y ≥ 0

c. xRy if and only if |x − y| ≤ 2

d. xRy if and only if x has the same number of base 10 digits as y, ignoring signs of x, y.

e. xRy if and only if the sum of the base 10 digits of x is the same as the sum of the base
10 digits of y, ignoring signs of x, y.

2. Which of the relations in question 1 are equivalence relations? For those that are, say exactly
which integers make up the equivalence class [11] using correct set notation.

3. Let R be the relation on Z defined by xRy if and only if 4x − 15y is a multiple of 11. Show
that R is an equivalence relation and describe all of the equivalence classes for R.

4. Decide whether each of the following statements is true. For those that are true, give a short
proof using the postulates for Z given in §2.1 of the text. For those that are false, give a
counterexample.

a. If xy = xz for integers x, y, z, then y = z.

b. If x < y, then x2 < y2.

c. If z − x < z − y, then y < x.

‘B’ Section

1. In class we showed that the distinct equivalence classes of an equivalence relation R on a set
A give a partition of A. Conversely, suppose

A =
⋃

λ∈L

Aλ

is a partition of A. Show that the relation R on A defined by:

aRa′ ⇔ a, a′ are both elements of the same subsetAλ

is an equivalence relation on A.
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2. In both parts of this problem, you will be working in Z, using the postulates from §2.1

a. Show that if x · y = 0, then x = 0 or y = 0. (Hint: Argue by contraposition. By the
trichotomy postulate 4, if x 6= 0, then x ∈ Z

+ or −x ∈ Z
+, and the same is true for y.)

b. From part a, deduce the cancellation law in Z: If x · y = x · z and x 6= 0, then y = z.

3. Prove by mathematical induction:

a. For all n ∈ Z
+,

12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
.

b. For all n ∈ Z
+,

1

1 · 2
+

1

2 · 3
+ · · · +

1

n(n + 1)
=

n

n + 1

c. For all n ≥ 2, n3 > 1 + 2n.

d. If |A| = n, then |P(A)| = 2n. (Suggestion: For the induction step, one proof comes like
this. Let A = {a1, . . . , ak, ak+1}. Every subset of A is of one of two types – the ones
containing ak+1 and the ones not containing ak+1. Count the number of subsets of each
type by using the induction hypothesis.)

4. The binomial coefficients are the numbers
(

n

k

)

=
n!

k!(n − k)!

(where 0! = 1 by convention).

a. Show using the definition that for all k with 1 ≤ k ≤ n,

(

n

k

)

+

(

n

k − 1

)

=

(

n + 1

k

)

(this is often known as the Pascal’s triangle identity for binomial coefficients, because it
is the fact underlying the way the coefficients can be computed from the Pascal’s triangle
table).

b. (The Binomial Theorem) Show by induction that for all n ≥ 1 and all a, b ∈ R

(a + b)n =

n
∑

ℓ=0

(

n

ℓ

)

aℓbn−ℓ

(that is, for each ℓ, 0 ≤ ℓ ≤ n, the number
(

n
ℓ

)

is exactly the coefficient of the term
aℓbn−ℓ appearing in the expansion of (a + b)n – the lower index ℓ is the same as the
exponent of a).
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