Mathematics 243, section 3 - Algebraic Structures

Problem Set 2
due: September 14, 2012

' A ' Section

1. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ be the indicated functions. In each case, say whether $f, g, f \circ g, g \circ f$ are one-to-one (injective) or onto (surjective), both, or neither. Justify your answers.
a. $f(x)=3 x, g(x)=4-x$
b. $f(x)=|x|, g(x)=\left\{\begin{array}{ll}x & \text { if } x \text { is even } \\ x-1 & \text { if } x \text { is odd }\end{array}\right.$.
2. Consider the binary operation on \mathbb{Z} given by

$$
x * y=x+y+5
$$

a. Is $*$ commutative? Why or why not?
b. Is $*$ associative? Why or why not?
c. Is there an identity element for $*$. What is the identity, or why not?
d. Are there any elements of \mathbb{Z} that have inverses under this operation? What are they, and what are the inverses?
3. Let $A=\{x, y, z, w\}$ and let $*$ be the binary operation on A given by the following table:

$*$	x	y	z	w
x	x	y	z	w
y	y	y	w	w
z	z	w	z	w
w	w	w	w	w

a. Explain how you can tell this operation is commutative.
b. Explain why x is an identity element for $*$.
c. Which elements have inverses and what are the inverses?
d. What is $(y * z) * z$? Is that the same as $y *(z * z)$?

' B ' Section

1. Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be mappings. Prove that if $f \circ g$ is onto and $g \circ f$ is one-to-one, then f is one-to-one and onto.
2. Let $*$ be an associative binary operation on a set A and assume there is an identity element e for $*$. If $a \in A$ has inverses b_{1} and b_{2}, show that $b_{1}=b_{2}$. Hint: Consider the "product" $\left(b_{1} * a\right) * b_{2}$.
3. Let A be a set and let $\mathcal{P}(A)$ be the power set of A as defined in $\S 1$ of the text and on Problem Set 1 . Let $*$ be the binary operation on $\mathcal{P}(A)$ defined by $S * T=S \cup T$. Answer the following questions and prove your assertions.
a. Is $*$ associative? Is $*$ commutative?
b. Is there an identity element in $\mathcal{P}(A)$ for this operation?
c. What elements of $\mathcal{P}(A)$ have inverses for this operation?
d. Make a table like the one in problem 3 of the ' A ' section for the operation in this problem, when $A=\{a, b\}$. List the elements of $\mathcal{P}(A)$ in this order on the borders of the table:

$$
\emptyset,\{a\},\{b\},\{a, b\} .
$$

Do you notice something?
4. Let $\times: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the vector cross product from multivariable calculus (MATH 241). Recall that this operation is defined by the following formula:

$$
\left(a_{1}, a_{2}, a_{3}\right) \times\left(b_{1}, b_{2}, b_{3}\right)=\left(a_{2} b_{3}-a_{3} b_{2},-\left(a_{1} b_{3}-a_{3} b_{1}\right), a_{1} b_{2}-a_{2} b_{1}\right)
$$

a. Show that \times is not associative and not commutative.
b. Show that \times does satisfy the Jacobi identity:

$$
(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=\mathbf{a} \times(\mathbf{b} \times \mathbf{c})+\mathbf{b} \times(\mathbf{c} \times \mathbf{a})
$$

for all \mathbf{a}, \mathbf{b}, and \mathbf{c} in \mathbb{R}^{3}. The + in this formula means the vector sum in \mathbb{R}^{3}, defined for vectors $\mathbf{d}=\left(d_{1}, d_{2}, d_{3}\right)$ and $\mathbf{e}=\left(e_{1}, e_{2}, e_{3}\right)$ by the rule

$$
\mathbf{d}+\mathbf{e}=\left(d_{1}, d_{2}, d_{3}\right)+\left(e_{1}, e_{2}, e_{3}\right)=\left(d_{1}+e_{1}, d_{2}+e_{2}, d_{3}+e_{3}\right) .
$$

c. Extra Credit In a sense, the additional term $\mathbf{b} \times(\mathbf{c} \times \mathbf{a})$ on the right in the Jacobi identity measures the failure of associativity. Using that idea, is $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$ ever equal to $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ when all three of the vectors are nonzero? Explain. Hint: One way to approach this is to think about the geometric conditions on the three vectors under which it will be true that

$$
\mathbf{b} \times(\mathbf{c} \times \mathbf{a})=\mathbf{0} .
$$

