Mathematics 243, section 3 - Algebraic Structures

Problem Set 1
due: September 7, 2012

'A' Section

1. Let

$$
\begin{aligned}
U & =\{1,2,3, \ldots, 12\} \\
A & =\{1,3,5,7,9,11\} \\
B & =\{4,6,8\} \\
C & =\{7,8,9,10\}
\end{aligned}
$$

Find each of the following sets:
a. $A^{\prime} \cap C$
b. $A \cup C^{\prime}$
c. $A \cap(B \cup C)$
d. $(A-B) \cup(B-C)$
2. Let $S=\{a, b, c, d\}$
a. List all elements of $\mathcal{P}(S)$ (the power set)
b. Write out all of the partitions of S.
3. Let $A=\{1,2\}$. For each pair of subsets $S, T \subset A$ (including the cases where S or T is \emptyset or A itself), define $S+T=(S \cup T)-(S \cap T)$. Make a chart with rows labeled with the possibilities for S, columns labeled with the possibilities for T, and entries showing which subset of A is produced as $S+T$. (For example, in the row for $S=\{1\}$ and the column for $T=\{1,2\}$, your chart will contain the entry $S+T=\{1,2\}-\{1\}=\{2\}$.)
4. Let $A=\{1,2,3,4,5\}, B=\{a, b, c, d, e\}$ and let $f: A \rightarrow B$ be defined by $f(1)=a, f(2)=e$, $f(3)=c, f(4)=a$, and $f(5)=e$. Find the following:
a. $f(A)$
b. $f(S)$ for $S=\{3,4,5\} \subset A$
c. $f^{-1}(f(S))$ for $S=\{1,2,3\} \subset A$
d. $f^{-1}(T)$ for $T=\{c, d, e\} \subset B$
e. $f\left(f^{-1}(T)\right)$ for $T=\{a, b, c\} \subset B$
5. Let P be the set of positive integers and let $f: P \rightarrow P$ be defined by

$$
f(x)= \begin{cases}3 x+1 & \text { if } x \text { is odd } \\ x / 2 & \text { if } x \text { is even }\end{cases}
$$

a. Compute $f(7), f(f(7)), f(f(f(7)))$, etc. What happens eventually if you continue this long enough? Try the same thing with $f(9), f(f(9)), f(f(f(9)))$, etc.
b. Show by example that f is not one-to-one.
c. Explain why f is onto.

'B' Section

1. Let A, B be any two subsets of a universal set U.
a. Prove that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.
b. Prove that $(A \cup B)-(A \cap B)=\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)$.
2. Let A and B be finite sets with $|A|=m$ and $|B|=n$.
a. Show that if $m>n$, there are no one-to-one mappings $f: A \rightarrow B$.
b. Show that if $n>m$, there are no onto mappings $f: A \rightarrow B$.
c. Assume $n \geq m$. How many different one-to-one mappings $f: A \rightarrow B$ are there? Prove your assertion.
3. Refer back to Problem 4 in the ' A ' section for some examples of the patterns described in this exercise.
a. Show that if f is not one-to-one, then there is some $S \subset A$ such that $f^{-1}(f(S)) \neq S$.
b. Conversely, show that if f is one-to-one, then $f^{-1}(f(S))=S$ for all $S \subset A$.
c. Show that if f is not onto, then there is some $T \subset B$ such that $f\left(f^{-1}(T)\right) \neq T$
d. Conversely, show that if f is onto, then $f\left(f^{-1}(T)\right)=T$ for all $T \subset B$.
