Mathematics 243, section 3 – Algebraic Structures Problem Set 1 **due:** September 7, 2012

A' Section

1. Let

$$U = \{1, 2, 3, \dots, 12\}$$
$$A = \{1, 3, 5, 7, 9, 11\}$$
$$B = \{4, 6, 8\}$$
$$C = \{7, 8, 9, 10\}$$

Find each of the following sets:

- a. $A' \cap C$
- b. $A \cup C'$
- c. $A \cap (B \cup C)$
- d. $(A-B) \cup (B-C)$
- 2. Let $S = \{a, b, c, d\}$
 - a. List all elements of $\mathcal{P}(S)$ (the power set)
 - b. Write out all of the *partitions* of S.
- 3. Let $A = \{1, 2\}$. For each pair of subsets $S, T \subset A$ (including the cases where S or T is \emptyset or A itself), define $S + T = (S \cup T) (S \cap T)$. Make a chart with rows labeled with the possibilities for S, columns labeled with the possibilities for T, and entries showing which subset of A is produced as S + T. (For example, in the row for $S = \{1\}$ and the column for $T = \{1, 2\}$, your chart will contain the entry $S + T = \{1, 2\} \{1\} = \{2\}$.)
- 4. Let $A = \{1, 2, 3, 4, 5\}$, $B = \{a, b, c, d, e\}$ and let $f : A \to B$ be defined by f(1) = a, f(2) = e, f(3) = c, f(4) = a, and f(5) = e. Find the following:
 - a. f(A)b. f(S) for $S = \{3, 4, 5\} \subset A$ c. $f^{-1}(f(S))$ for $S = \{1, 2, 3\} \subset A$ d. $f^{-1}(T)$ for $T = \{c, d, e\} \subset B$ e. $f(f^{-1}(T))$ for $T = \{a, b, c\} \subset B$
- 5. Let P be the set of positive integers and let $f: P \to P$ be defined by

$$f(x) = \begin{cases} 3x+1 & \text{if } x \text{ is odd} \\ x/2 & \text{if } x \text{ is even} \end{cases}$$

- a. Compute f(7), f(f(7)), f(f(f(7))), etc. What happens eventually if you continue this long enough? Try the same thing with f(9), f(f(9)), f(f(f(9))), etc.
- b. Show by example that f is *not* one-to-one.
- c. Explain why f is onto.

$'\!B' \ Section$

- 1. Let A, B be any two subsets of a universal set U.
 - a. Prove that $(A \cap B)' = A' \cup B'$.
 - b. Prove that $(A \cup B) (A \cap B) = (A \cap B') \cup (A' \cap B)$.
- 2. Let A and B be finite sets with |A| = m and |B| = n.
 - a. Show that if m > n, there are no one-to-one mappings $f : A \to B$.
 - b. Show that if n > m, there are no onto mappings $f : A \to B$.
 - c. Assume $n \ge m$. How many different one-to-one mappings $f : A \to B$ are there? Prove your assertion.
- 3. Refer back to Problem 4 in the 'A' section for some examples of the patterns described in this exercise.
 - a. Show that if f is not one-to-one, then there is some $S \subset A$ such that $f^{-1}(f(S)) \neq S$.
 - b. Conversely, show that if f is one-to-one, then $f^{-1}(f(S)) = S$ for all $S \subset A$.
 - c. Show that if f is not onto, then there is some $T \subset B$ such that $f(f^{-1}(T)) \neq T$
 - d. Conversely, show that if f is onto, then $f(f^{-1}(T)) = T$ for all $T \subset B$.