Mathematics 243, section 3 - Algebraic Structures
 Problem Set 9
 due: Friday, November 30

'A'Section

1. For each of the following values of n,

- Find all distinct generators of the group $\left(\mathbb{Z}_{n},+\right)$,
- Find all subgroups of $\left(\mathbb{Z}_{n},+\right)$ and their orders
- Find all elements of $\left(\mathbb{Z}_{n}^{\times}, \cdot\right)$ and their orders (for the multiplication operation $\bmod n$ now)

$$
n=13,16,30
$$

(Use the "big theorem" on cyclic groups for as much of this as possible. It is not necessary to do a lot of computations in most cases.)

Solution: For $n=13$, by the "big theorem" we know that the generators of \mathbb{Z}_{13} are the $[a]$ such that $\operatorname{gcd}(a, 13)=1$, which are $[1],[2],[3],[4], \ldots,[12]$. The only subgroups are $\{[0]\}$ and \mathbb{Z}_{13} itself.
For the multiplication operation, $\mathbb{Z}_{13}^{\times}=\{[1],[2], \ldots,[13]\}$, and now taking powers $[2]^{k}$ we get:

$$
\langle[2]\rangle=\{[1],[2],[4],[8],[3],[6],[12],[11],[9],[5],[10],[7]\}=\mathbb{Z}_{13}^{\times}
$$

This shows \mathbb{Z}_{13}^{\times}is cyclic of order 12 with generator [2]. That says that [1] generates the trivial subgroup consisting of just the identity. The elements $[2]^{5}=[6],[2]^{7}=[11],[2]^{11}$ are the other generators of \mathbb{Z}_{13}^{\times}and have multiplicative order 12. Then $[2]^{2}=[4]$ and $[2]^{10}=[10]$ generate the cyclic subgroup of order 6, so have multiplicative order 6. Also, $[2]^{3}=[8]$ and $[2]^{9}=[5]$ generate the cyclic subgroup of order 4 , so have multiplicative order 4 , Next, $[2]^{4}=[3]$ and $[2]^{8}$ generate a cyclic subgroup of order 3 and have multiplicative order 3. Finally, $[2]^{6}=[12]$ generates a cyclic subgroup of order 2 and has multiplicative order 2.
$n=16:$ By the "big theorem" we know that the generators of the cyclic group ($\mathbb{Z}_{16},+$) are the $[a]$ such that $\operatorname{gcd}(a, 16)=1$, which are [1], [3], [5], [7], [9], [11], [13], [15]. The additive subgroups of \mathbb{Z}_{16} are

$$
\begin{aligned}
\{[0]\} & =\langle[0]\rangle \\
\mathbb{Z}_{16} & =\langle[1]\rangle=\langle[3]\rangle=\cdots=\langle[15]\rangle \\
\{[0],[2],[4],[6],[8],[10],[12],[14]\} & =\langle[2]\rangle=\langle[6]\rangle=\langle[10]\rangle=\langle[14]\rangle \\
\{[0],[4],[8],[12]\} & =\langle[4]\rangle=\langle[12]\rangle \\
\{[0],[8]\} & =\langle[8]\rangle .
\end{aligned}
$$

The number of generators in each case is given by the Euler function from Problem Set 7: There are $\varphi(o([a]))$ different generators of the group if the order is $o([a])$.

For the multiplication operation, $\mathbb{Z}_{16}^{\times}=\{[1],[3],[5],[7],[9],[11],[13],[15]\}$. We have the following (finding the smallest positive powers giving the multiplicative identity [1]):

$$
\begin{aligned}
o([1]) & =1 \\
o([3]) & =4 \text { since }[3]^{4}=[81]=[1] \\
o([5]) & =4 \text { since }[5]^{4}=[625]=[1] \\
o([7]) & =2 \text { since }[7]^{2}=[49]=[1] \\
o([9]) & =2 \text { since }[9]^{2}=[81]=[1] \\
o([11]) & =4 \text { since }[11]^{4}=[1] \\
o([13]) & =4 \text { since }[13]^{4}=[1] \\
o([15]) & =2 \text { since }[15]^{2}=[1] .
\end{aligned}
$$

(Note that this shows \mathbb{Z}_{16}^{\times}is not a cyclic group under multiplication.)
$n=30:$ By the "big theorem" we know that the generators of the cyclic group $\left(\mathbb{Z}_{30},+\right)$ are the $[a]$ such that $\operatorname{gcd}(a, 30)=1$, which are $[1],[7],[11],[13],[17],[19],[23],[29]$. The additive subgroups of \mathbb{Z}_{30} are

$$
\begin{aligned}
\{0\} & =\langle[0]\rangle \\
\mathbb{Z}_{30} & =\langle[1]\rangle=\langle[7]\rangle=\cdots=\langle[29]\rangle \\
\{[0],[2],[4], \ldots,[28]\} & =\langle[2]\rangle=\langle[4]\rangle=\langle[8]\rangle=\langle[14]\rangle=\langle[16]\rangle \\
& =\langle[22]\rangle=\langle[26]\rangle=\langle[28]\rangle \\
\{[0],[3],[6], \ldots,[27]\} & =\langle[3]\rangle=\langle[9]\rangle=\langle[21]\rangle=\langle[27]\rangle \\
\{[0],[5],[10],[15],[20],[25]\} & =\langle[5]\rangle=\langle[25]\rangle \\
\{[0],[6],[12],[18],[24]\} & =\langle[6]\rangle=\langle[12]\rangle=\langle[18]\rangle=\langle[24]\rangle \\
\{[0],[10],[20]\} & =\langle[10]\rangle=\langle[20]\rangle \\
\{[0],[15]\} & =\langle[15]\rangle .
\end{aligned}
$$

Again, number of generators in each case is given by the Euler function from Problem Set 7: $\varphi(o([a]))$.
For the multiplication operation, $\mathbb{Z}_{30}^{\times}=\{[1],[7],[11],[13],[17],[19],[23],[29]\}$. We find that

$$
\begin{aligned}
o([1]) & =1 \\
o([7]) & =4 \text { since }[7]^{4}=[1] \\
o([11]) & =2 \text { since }[11]^{2}=[1] \\
o([13]) & =4 \text { since }[13]^{4}=[1] \\
o([17]) & =4 \text { since }[17]^{4}=[1] \\
o([19]) & =2 \text { since }[19]^{2}=[1] \\
o([23]) & =4 \text { since }[23]^{4}=[1] \\
o([29]) & =2 \text { since }[29]^{2}=[1] .
\end{aligned}
$$

(Note that this shows \mathbb{Z}_{16}^{\times}is not a cyclic group under multiplication.)
2. Let $\varphi: \mathbb{Z}_{18} \rightarrow \mathbb{Z}_{9}$ be defined by $\varphi([x])=[3 x]$.
(a) Verify that φ is a group homomorphism.

Solution: φ is a group homomorphism since for all $[x]$ and $[y]$ in \mathbb{Z}_{18},

$$
\varphi([x]+[y])=\varphi([x+y])=[3(x+y)]=[3 x]+[3 y]=\varphi([x])+\varphi([y]) .
$$

(b) Determine the kernel of φ.

Solution: The kernel of φ is

$$
\varphi^{-1}(\{[0]\})=\{[0],[3],[6],[9],[12],[15]\}=\langle[3]\rangle \subset \mathbb{Z}_{18}
$$

(c) Determine the image of φ.

Solution: The image of φ is

$$
\varphi\left(\mathbb{Z}_{18}\right)=\{[0],[3],[6]\}=\langle[3]\rangle \subset \mathbb{Z}_{9}
$$

' B ' Section

1. Let G be a group and consider the mapping $\varphi: G \rightarrow G$ defined by $\varphi(x)=x^{-1}$. Show that φ is always one-to-one and onto, but that φ is an isomorphism of groups if and only if G is an abelian group.

Solution: The map φ is one-to-one since $\varphi(x)=\varphi(y)$ implies $x^{-1}=y^{-1}$, and taking inverses of both sides we get $x=y$. The map φ is onto because given any $x \in G, x=\left(x^{-1}\right)^{-1}=\varphi\left(x^{-1}\right)$. This is a group isomorphism if and only if

$$
(x * y)^{-1}=\varphi(x * y)=\varphi(x) * \varphi(y)=x^{-1} * y^{-1}=(y * x)^{-1} .
$$

where the last equality follows from the reverse order law. Since φ is one-to-one, this is equivalent to saying that $x * y=y * x$ for all $x, y \in G$ and hence G is abelian. Hence φ is an isomorphism of groups if and only if G is an abelian group.
2. An automorphism of a group G is an isomorphism of groups $\varphi: G \rightarrow G$ (that is, the domain and the range are both the same group G).
(a) Let $A=\{a, b, c\}$ and $G=\mathcal{S}(A)$ be the group of permutations of A. Show that $\varphi: G \rightarrow G$ defined by $\varphi(f)=R_{a} \circ f \circ R_{a}$ is an automorphism of G.
Solution: φ is a one-to-one mapping from G to itself since if $\varphi(f)=\varphi(g)$, then $R_{a} \circ f \circ$ $R_{a}=R_{a} \circ g \circ R_{a}$. Composing with R_{a} again on the left and right on both sides, since $R_{a} \circ R_{a}=I_{A}$, we get $f=g$. Since $\mathcal{S}(A)$ is a finite set and φ is one-to-one, it is also onto. Finally, φ is an isomorphism of groups since

$$
\begin{aligned}
\varphi(f \circ g) & =R_{a} \circ f \circ g \circ R_{a} \\
& =R_{a} \circ f \circ R_{a} \circ R_{a} \circ g \circ R_{a} \quad \text { since } R_{a} \circ R_{a}=I_{A} \\
& =\left(R_{a} \circ f \circ R_{a}\right) \circ\left(R_{a} \circ g \circ R_{a}\right) \text { (associativity of composition) } \\
& =\varphi(f) \circ \varphi(g) .
\end{aligned}
$$

(b) Show that the collection of all automorphisms of a general group G is itself a group under the operation of function composition.
Solution: We must show that the four axioms (properties) in the definition of a group are satisfied.

- First, if φ, ψ are automorphisms of G, then $\varphi \circ \psi$ is one-to-one and onto by theorems from Chapter 1. The composition is also an isomorphism of groups since

$$
\begin{aligned}
(\varphi \circ \psi)(x * y) & =\varphi(\psi(x * y)) \\
& =\varphi(\psi(x) * \psi(y)) \text { since } \psi \text { is a homomorphism } \\
& =\varphi(\psi(x)) * \varphi(\psi(y)) \text { since } \varphi \text { is a homomorphism } \\
& =(\varphi \circ \psi)(x) *(\varphi \circ \psi)(y) .
\end{aligned}
$$

Thus the set of automorphisms is closed under composition.

- Function composition is always associative, so there is nothing more to prove for that property in the definition of a group.
- The identity map I_{G}, defined by $I_{G}(x)=x$ for all $x \in G$, is one-to-one and onto and satisfies

$$
I_{G}(x * y)=x * y=I_{G}(x) * I_{G}(y) .
$$

Hence it is an isomorphism from G to itself, and it is the identity under composition, since $\varphi \circ I_{G}=\varphi=I_{G} \circ \varphi$ for any automorphism φ of G.

- Finally, if φ is an isomorphism, then the inverse mapping φ^{-1} exists as a mapping from G to itself and is also one-to-one and onto. We want to show that φ^{-1} also has the homomorphism property. So let $x, y \in G$. Since φ is onto, we know $x=\varphi(a)$ and $y=\varphi(b)$ for some unique $a, b \in G$. Therefore since φ is a homomorphism, we have $\varphi(a * b)=x * y$. But this also says $\varphi^{-1}(x) * \varphi^{-1}(y)=a * b=\varphi^{-1}(x * y)$. Hence φ^{-1} is also a group homomorphism.
(c) Show if G is a general group and $g \in G$, then the conjugation mapping defined by $\varphi_{g}(x)=g x g^{-1}$ is an automorphism of G. (Note that the example in part (a) has this form.)
Solution: φ_{g} is one-to-one since if $\varphi_{g}(x)=\varphi_{g}(y)$, then $g x g^{-1}=g y g^{-1}$. But that implies $g^{-1} g x g^{-1} g=g^{-1} g y g^{-1} g$, so $x=y$. Next, φ_{g} is onto since given $y \in G, y=\varphi_{g}\left(g^{-1} y g\right)=$ $g g^{-1} y g g^{-1}$. Finally, φ_{g} is a group homomorphism since for all $x, y \in G$, as in part (a) above

$$
\begin{aligned}
\varphi_{g}(x y) & =g x y g^{-1} \\
& =g x\left(g^{-1} g\right) y g^{-1}, \text { since } g^{-1} g=e \\
& =\left(g x g^{-1}\right)\left(g y g^{-1}\right) \text { by associativity } \\
& =\varphi_{g}(x) \varphi_{g}(y)
\end{aligned}
$$

(d) Show that the collection of φ_{g} for all $g \in G$ (as in part (c)) is a subgroup of the group of automorphisms of G.
Solution: We will use the "shortcut method" from Theorem 3.10. First, this collection of automorphisms is certainly nonempty since we have one of them for each $g \in G$. (They might not be distinct, of course.) Let φ_{g} and φ_{h} be any two such automorphisms. Note that φ_{h}^{-1} is the mapping $\varphi_{h^{-1}}$ since

$$
y=\varphi_{h}(x)=h x h^{-1} \Leftrightarrow x=h^{-1} y h=\varphi_{h^{-1}}(y) .
$$

Then $\varphi_{g} \circ \varphi_{h}^{-1}$ is the mapping defined by

$$
\left(\varphi_{g} \circ \varphi_{h}^{-1}\right)(x)=g h^{-1} x h g^{-1}=\left(g h^{-1}\right) x\left(g h^{-1}\right)^{-1}=\varphi_{g h^{-1}}(x) .
$$

This is the automorphism φ_{k} for $k=g h^{-1} \in G$. Hence this collection of automorphisms is a subgroup of the group of all automorphisms.
3. We can consider isomorphism of groups as a relation on the collection of all groups: $G R H \Leftrightarrow$ there exists an isomorphism $\varphi: G \rightarrow H$. Show that isomorphism of groups is an equivalence relation on the collection of all groups.
Solution: Every group is isomorphic to itself via the identity mapping $I_{G}: G \rightarrow G$ with $I_{G}(g)=g$ for all $g \in G$. This is clearly one-to-one, onto, and a group homomorphism. Thus the isomorphism relation is reflexive. Next, if G is isomorphic to H via $\varphi: G \rightarrow H$, then since φ is one-to-one and onto, we have the inverse mapping $\varphi^{-1}: H \rightarrow G$. We want to show that φ^{-1} also has the homomorphism property. So let $x, y \in H$, Since φ is onto, we know $x=\varphi(a)$ and $y=\varphi(b)$ for some $a, b \in G$. Therefore since φ is a homomorphism, we have $\varphi(a * b)=x * y$. But this also says $\varphi^{-1}(x) * \varphi^{-1}(y)=a * b=\varphi^{-1}(x * y)$. Hence φ^{-1} is also a group homomorphism from H to G. Thus φ^{-1} is also an isomorphism of groups. Hence H is isomorphic to G and the isomorphism relation is symmetric. Finally, say G is isomorphic to H via $\varphi: G \rightarrow H$ and H is isomorphic to K via $\psi: H \rightarrow K$. Consider $\psi \circ \varphi: G \rightarrow K$.

We know from general results from Chapter 1 that $\psi \circ \varphi$ is one-to-one and onto. Moreover, for all $x, y \in G$,

$$
\begin{aligned}
(\varphi \circ \psi)\left(x *_{G} y\right) & =\varphi\left(\psi\left(x *_{G} y\right)\right) \\
& =\varphi\left(\psi(x) *_{H} \psi(y)\right) \text { since } \psi \text { is a homomorphism } \\
& =\varphi(\psi(x)) *_{K} \varphi(\psi(y)) \text { since } \varphi \text { is a homomorphism } \\
& =(\varphi \circ \psi)(x) *_{K}(\varphi \circ \psi)(y) .
\end{aligned}
$$

Thus $\varphi \circ \psi$ is also an isomorphism from G to K. This shows the isomorphism relation is transitive.

Comment: You should note that the ideas here are the same as those in the proof of part (b) of question 2 above(!)
4. Let $G=\langle a\rangle$ be a cyclic group and let $\varphi: G \rightarrow H$ be a group homomorphism. Show that if we know the one element $\varphi(a)$, then we know where φ maps every element of G.

Solution: If $G=\langle a\rangle$ is a cyclic group, then every element of the group G is a^{n} for $n \in \mathbb{Z}$. If $n=0$, then $a^{0}=e_{G}$ and $\varphi\left(e_{G}\right)=e_{H}$. If $n>0$, then we argue by induction that $\varphi\left(a^{n}\right)=(\varphi(a))^{n}$ (so knowing $\varphi(a)$ determines all of those elements too). The base case for the induction is $n=1$, and there is nothing to prove there. Assume we know $\varphi\left(a^{k}\right)=(\varphi(a))^{k}$. Then

$$
\begin{aligned}
\varphi\left(a^{k+1}\right) & =\varphi\left(a^{k} * a\right) \text { by definition of the power } \\
& =\varphi\left(a^{k}\right) * \varphi(a) \text { by the homomorphism property } \\
& =(\varphi(a))^{k} * \varphi(a) \text { by the induction hypothesis } \\
& =(\varphi(a))^{k+1} \text { by the definition of the power. }
\end{aligned}
$$

This shows $\varphi\left(a^{n}\right)=(\varphi(a))^{n}$ for all $n \geq 1$. A similar induction also shows $\varphi\left(a^{n}\right)=(\varphi(a))^{n}$ for all $n \leq-1$. The base case there is the fact we proved in general before: $\varphi\left(a^{-1}\right)=(\varphi(a))^{-1}$.

