Mathematics 243, section 3 - Algebraic Structures Solutions for Problem Set 8

November 16, 2012

'A'Section

1. Consider the 2×2 matrices I_{2}, S, X, Y, D, T defined by

$$
\begin{aligned}
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), & S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
X=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), & Y=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
D=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), & T=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

Let $G=\left\{I_{2}, S, S^{2}, S^{3}, X, Y, D, T\right\}$. Construct the operation table for matrix multiplication on this set and verify that G is a group under this operation.

Solution: The table looks like this (taking the products in order row \times column in all cases):

\cdot	I_{2}	S	S^{2}	S^{3}	X	Y	D	T
I_{2}	I_{2}	S	S^{2}	S^{3}	X	Y	D	T
S	S	S^{2}	S^{3}	I_{2}	D	T	Y	X
S^{2}	S^{2}	S^{3}	I_{2}	S	Y	X	T	D
S^{3}	S^{3}	I_{2}	S	S^{2}	T	D	X	Y
X	X	T	Y	D	I_{2}	S^{2}	S^{3}	S
Y	Y	D	X	T	S^{2}	I_{2}	S	S^{3}
D	D	X	T	Y	S	S^{3}	I_{2}	S^{2}
T	T	Y	D	X	S^{3}	S	S^{2}	I_{2}

The table shows that G is closed under matrix multiplication, so this is a binary operation. Matrix multiplication is always associative as we saw before, so this operation is associative. The element I_{2} is an identity. Finally, each element has an inverse for matrix multiplication. I, S^{2}, X, Y, T, D are their own inverses, while $S^{-1}=S^{3}$ and $\left(S^{3}\right)^{-1}=S$.
2. a. Let $G=\mathbb{Z}_{12}$ under the operation of addition modulo 12 . Determine the cyclic subgroups $\langle[a]\rangle$ for all $[a] \in \mathbb{Z}_{12}$.
Solution: We have

$$
\begin{aligned}
& \langle[0]\rangle=\{[0]\} \\
& \langle[1]\rangle=\mathbb{Z}_{12}=\langle[5]\rangle=\langle[7]\rangle=\langle[11]\rangle \\
& \langle[2]\rangle=\{[0],[2],[4],[6],[8],[10]\}=\langle[10]\rangle \\
& \langle[3]\rangle=\{[0],[3],[6],[9]\}=\langle[9]\rangle \\
& \langle[4]\rangle=\{[0],[4],[8]\}=\langle[8]\rangle \\
& \langle[6]\rangle=\{[0],[6]\}
\end{aligned}
$$

b. Conjecture a general formula for the number of elements in $\langle[a]\rangle$ in terms of the integers a and 12 . Check out your conjecture on the corresponding list of cyclic subgroups of \mathbb{Z}_{20} constructed in class on November 14.
Solution: The pattern that fits all of these examples is that the number of elements in $\langle[a]\rangle \subseteq \mathbb{Z}_{n}$ is equal to $n / \operatorname{gcd}(a, n)$. For instance, with $n=12$ and $a=10$, we have $\operatorname{gcd}(10,12)=2$, and $\langle[10]\rangle$ has $12 / 2=6$ elements. Moreover, all the a with the same $\operatorname{gcd}(a, n)$ apparently generate the same cyclic subgroup. Comment: These patterns do hold in general and we will prove them shortly.

'B' Section

1. Let

$$
G=\left\{\left.\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

Show that G is a group under the operation of matrix addition.
Solution: We know that $M_{3 \times 3}(\mathbb{R})$ is a group under matrix addition. So a sneaky method here is to apply the "shortcut method" of Theorem 3.10 in the text to show that G is a subgroup of $M_{3 \times 3}(\mathbb{R}) . G$ is definitely nonempty since it contains elements for all triples a, b, c of real numbers. Next, if

$$
X=\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{ccc}
0 & a^{\prime} & b^{\prime} \\
0 & 0 & c^{\prime} \\
0 & 0 & 0
\end{array}\right)
$$

are in G, then

$$
X-Y=\left(\begin{array}{ccc}
0 & a-a^{\prime} & b-b^{\prime} \\
0 & 0 & c-c^{\prime} \\
0 & 0 & 0
\end{array}\right) \in G
$$

as well. Therefore G is a subgroup of $M_{3 \times 3}(\mathbb{R})$, hence a group.
2. Let

$$
G=\left\{\left.\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

Is G is a group under the operation of matrix multiplication. If so, say why; if not say which properties in the definition fail.

Solution: We know that $G L_{3}(\mathbb{R})$ is a group under matrix multiplication. So a sneaky method here is to apply the "shortcut method" of Theorem 3.10 in the text to show that G is a
subgroup of $G L_{3}(\mathbb{R}) . G$ is definitely nonempty since it contains elements for all triples a, b, c of real numbers. Next, if

$$
X=\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{ccc}
1 & a^{\prime} & b^{\prime} \\
0 & 1 & c^{\prime} \\
0 & 0 & 1
\end{array}\right)
$$

are in G, then

$$
Y^{-1}=\left(\begin{array}{ccc}
1 & -a^{\prime} & a^{\prime} c^{\prime}-b^{\prime} \\
0 & 1 & -c^{\prime} \\
0 & 0 & 1
\end{array}\right)
$$

Hence

$$
X Y^{-1}=\left(\begin{array}{ccc}
1 & a-a^{\prime} & a^{\prime} c^{\prime}-b^{\prime}-a c^{\prime}+b \\
0 & 1 & c-c^{\prime} \\
0 & 0 & 1
\end{array}\right) \in G
$$

as well. Therefore G is a subgroup of $G L_{3}(\mathbb{R})$, hence a group.
3. Let G be a group, and consider the relation R on G defined by $x R y \leftrightarrow y=a x a^{-1}$ for some $a \in G$. (If $x R y$ is true, the a that works in the equation will depend on x, y.) R is called the conjugacy relation on G.
a. Show that conjugacy is an equivalence relation on G.

Solution: For all $x \in G$, we have $x R x$ since $x=e x e^{-1}$. Therefore R is reflexive. If $x R y$, then $y=a x a^{-1}$. If we multiply both sides of this equality by a^{-1} on the left and a on the right, we get $x=a^{-1} y a=a^{-1} y\left(a^{-1}\right)^{-1}$. It follows that $y R x$ is also true, so R is symmetric. Finally, if $x R y$ and $y R z$, then $y=a x a^{-1}$ and $z=b y b^{-1}$ for some $a, b \in G$. Substituting, we get $z=b\left(a x a^{-1}\right) b^{-1}=(b a) x(b a)^{-1}$ by associativity and the reverse order law for inverses. Therefore R is transitive.
b. Show that G is an abelian group if and only if the equivalence classes for the conjugacy relation satisfy $[x]=\{x\}$ for all $x \in G$.
Solution: We have $[x]=\{x\}$ if and only if $x=a x a^{-1}$ for all $a \in G$, or equivalently if and only if $x a=a x$. This is true for all classes $[x]$ if and only if $x a=a x$ for all a and all x in G. That is the same as saying the operation in G is commutative, or that G is an abelian group.
c. More generally, show that if $[x]=\{x\}$ for some element $x \in G$, then $x a=a x$ for all $a \in G$ and conversely. The set of such elements x is called the center of G : The center is the subset of G defined by:

$$
Z(G)=\{x \in G \mid x a=a x \text { for all a in } G\}
$$

Solution: One direction is essentially the same as the argument for part of the proof of part b, except we are no longer assuming that $[x]=\{x\}$ holds for all $x \in G$, just for
some particular $x \in G$. This proof is "reversible," so it can be phrased like this:

$$
\begin{aligned}
{[x]=\{x\} } & \Leftrightarrow x=a x a^{-1} \text { for all } a \in G \\
& \Leftrightarrow x a=a x a^{-1} a \text { for all } a \in G \\
& \Leftrightarrow x a=a x\left(a^{-1} a\right) \text { for all } a \in G, \text { by associativity } \\
& \Leftrightarrow x a=a x e \text { for all } a \in G, \text { by definition of inverse } \\
& \Leftrightarrow x a=a x \text { for all } a \in G, \text { by definition of identity element. }
\end{aligned}
$$

Hence $[x]=\{x\}$ if and only if $x \in Z(G)$, the center of G.
d. Show that the center of G (as defined in part c) is a subgroup of G.

Solution: We again use the criterion of Theorem 3.10: $Z(G)$ is not empty since it always contains the identity element $e \in G$ - recall $e x=x=x e$ for all $x \in G$. Next, let $x, y \in Z(G)$, then $x a=a x$ and $y a=a y$ for all $a \in G$. But then $y^{-1} y a y^{-1}=y^{-1} a y y^{-1}$ as well so $a y^{-1}=y^{-1} a$ for all $a \in G$. Hence by associativity and this last observation, for all $a \in G$:

$$
\left(x y^{-1}\right) a=x\left(y^{-1} a\right)=x\left(a y^{-1}\right)=(x a) y^{-1}=(a x) y^{-1}=a\left(x y^{-1}\right) .
$$

This shows $x y^{-1} \in Z(G)$, so $Z(G)$ is a subgroup of G.
e. Let $x \in G$ be a fixed element and define $C_{x}=\left\{a \in G \mid x=a x a^{-1}\right\}$. Show that C_{x} is a subgroup of G (C_{x} is called the centralizer of $\left.x\right)$.
Solution: The idea of the proof is similar to that of the proof of part d. First, C_{x} is not empty since C_{x} contains at least the identity element. Let $a, b \in C_{x}$. Then $x=a x a^{-1}=b x b^{-1}$. It also follows by multiplying both sides of the equality $x=b x b^{-1}$ by b^{-1} on the left and b on the right that $b^{-1} x b=x$. But then by the reverse order law and associativity,

$$
\left(a b^{-1}\right) x\left(a b^{-1}\right)^{-1}=a b^{-1} x b a^{-1}=a\left(b^{-1} x b\right) a^{-1}=a x a^{-1}=x .
$$

It follows that $a b^{-1} \in C_{x}$, so C_{x} is a subgroup by Theorem 3.10.
f. Let $G=\mathcal{S}(A)$ be the group of permutations of $A=\{a, b, c\}$. Using the names for the elements of this group we introduced in Problem Set 3, find all of the equivalence classes for the conjugacy relation on G (there are three of them), determine the centralizer of each element of G, and the center of G. How are the sizes of the equivalence class of x and the number of elements of the centralizer of x related in each case?
Solution: Recall that $\mathcal{S}(A)=\left\{I_{A}, R_{a}, R_{b}, R_{c}, C_{1}, C_{2}\right\}$. Computing we find that there are exactly three conjugacy classes:

$$
\begin{aligned}
& {\left[I_{A}\right]=\left\{I_{A}\right\}} \\
& {\left[R_{a}\right]=\left\{R_{a}, R_{b}, R_{c}\right\}=\left[R_{b}\right]=\left[R_{a}\right]} \\
& {\left[C_{1}\right]=\left\{C_{1}, C_{2}\right\}}
\end{aligned}
$$

To start, since I_{A} is the identity element of this group, which commutes with every element, it follows from part c above, that $\left[I_{A}\right]=\left\{I_{A}\right\}$. The rest can be read off from the operation table you derived in Problem Set 3. For example,

$$
R_{b}=R_{c} \circ R_{a} \circ R_{c}^{-1},
$$

so $R_{b} \in\left[R_{a}\right]$. Similarly

$$
R_{c}=R_{b} \circ R_{a} \circ R_{b}^{-1},
$$

so $R_{c} \in\left[R_{a}\right]$. On the other hand conjugating C_{1} or C_{2} by any element of $\mathcal{S}(A)$ always yields either C_{1} or C_{2}, so those elements form another conjugacy class. The centralizers are as follows:

$$
\begin{aligned}
C_{I_{A}} & =\mathcal{S}(A) \\
C_{C_{1}}=C_{C_{2}} & =\left\{I_{A}, C_{1}, C_{2}\right\} \\
C_{R_{a}} & =\left\{I_{A}, R_{a}\right\} \\
C_{R_{b}} & =\left\{I_{A}, R_{b}\right\} \\
C_{R_{c}} & =\left\{I_{A}, R_{c}\right\} .
\end{aligned}
$$

(For instance, from the group table for $\mathcal{S}(A)$, we see I, C_{1}, C_{2} all commute with C_{1}, but $R_{a} \circ C_{1}=R_{b} \neq R_{c}=C_{1} \circ R_{a}, R_{b} \circ C_{1}=R_{c} \neq R_{a}=C_{1} \circ R_{b}$, and $R_{c} \circ C_{1}=R_{a} \neq$ $R_{b}=C_{1} \circ R_{c}$. These computations show that none of R_{a}, R_{b}, R_{c} are in the centralizer of C_{1}.) In each case, the product of the size of the conjugacy class times the order of the centralizer equals $6=|\mathcal{S}(A)|$. (Equivalently, the size of the conjugacy class of x is $\frac{6}{\left|C_{x}\right|}$ in each case.)
4. Let H and K be subgroups of a group G.
a. Show that $H \cap K$ is also subgroup of G.

Solution: Both H and K contain e, so $H \cap K \neq \emptyset$. Next, let $x, y \in H \cap K$, then $x y^{-1} \in H$ since H is a subgroup. Similarly $x y^{-1} \in K$ since K is a subgroup. Thus $x y^{-1} \in H \cap K$. It follows that $H \cap K$ is a subgroup of G by Theorem 3.10.
b. Find an example where $H \cup K$ is a subgroup of G and one where $H \cup K$ is not a subgroup of G.
Solution: Consider the subgroups $H=\left\{I_{A}, R_{a}\right\}$ and $K=\left\{I_{A}, R_{b}\right\}$ of $\mathcal{S}(A)$ from question 3f above. $H \cup K$ is not a subgroup of $\mathcal{S}(A)$ because $H \cup K$ is not closed under composition $R_{a} \circ R_{b}=C_{1} \notin H \cup K$. On the other hand if $H=K$, then $H \cup K=H=K$ is a subgroup.

