Mathematics 243, section 3 - Algebraic Structures
 Solutions for Problem Set 7

' A ' Section

1. If we are using an affine cypher and we want to include more symbols in our plaintext messages than just the capital letters and a blank space as in the examples we did in class, then we can do that by increasing the modulus m for the numerical form of our plain and cypher text. For this problem, say we want to include the letters A, B, C, \ldots, Z, the space , and the apostrophe, comma, period, and question mark. Then we can use \mathbb{Z}_{31} as the numerical form of our alphabet, and make $A \leftrightarrow 0, B \leftrightarrow 1, \ldots, Z \leftrightarrow 25$, the space be 26 , the apostrophe be 27 , the comma be 28 , the period be 29 , and the question mark be 30 .
a. Use the affine encryption function $f(x)=7 x+20(\bmod 31)$ to encrypt the plaintext message "Are we on for today?" Give the cyphertext in literal form (using the same alphabet).
Solution: In numerical form, the plain text is:

$$
0,17,4,26,22,4,26,14,13,26,5,14,17,26,19,15,3,0,24,30
$$

Applying f to each in turn we get

$$
20,15,17,16,19,17,16,25,18,16,24,25,15,16,29,1,10,20,2,13
$$

For instance, the second symbol of the plain text is $R \leftrightarrow 17$. This maps to

$$
f(17)=7 \cdot 17+20=139 \equiv 15 \quad(\bmod 31)
$$

since $139=4 \cdot 31+15$ by division.
b. What is the decryption function $g=f^{-1}$ for this f ?

Solution: We want $g(x)=A x+B(\bmod 31)$ such that $g(f(x)) \equiv x(\bmod 31)$ for all $[x] \in \mathbb{Z}_{31}$. This will be true if $7 A \equiv 1(\bmod 31)$ and $B \equiv-20 A(\bmod 31)$. We find A via the extended Euclidean Algorithm:

$$
\begin{aligned}
31 & =4 \cdot 7+3 \\
6 & =2 \cdot 3+1 .
\end{aligned}
$$

Then we fill in the extended Euclidean Algorithm table as follows

	1	0
	0	1
4	1	-4
2	-2	9

which shows that $[A]=[7]^{-1}=[9]$ in \mathbb{Z}_{31}. Then $B \equiv-180 \equiv 6(\bmod 31)$. So $g(x)=$ $9 x+6(\bmod 31)$. Then $A \equiv(\bmod 31)$
c. Use the decryption function to decrypt the cyphertext "SZQOQDUSW." (Note: the period at the end is part of the cypher text.)
Solution: The cyphertext converts to numerical form as:

$$
18,25,16,14,16,3,20,18,23,29
$$

Applying the decryption function $g(x)=9 x+6(\bmod 31)$ to each number in turn, we get

$$
13,14,26,8,26,2,0,13,27,19
$$

which corresponds to the plain text "NO I CAN'T"
2. Suppose an RSA public key cryptosystem has $m=7 \cdot 11=77$, and an encryption exponent $e=7$ is used. Use the 27 -letter alphabet (space $=0$). from our examples in class and two-digit blocks.
a. Encrypt the plaintext message "GO FOR IT" using this system (Note: the cyphertext will be in numerical, not literal form.)
Solution: The RSA encryption function is $f(x)=x^{e}=x^{7}(\bmod 77)$ The plain text (as blocks of length 2) is

$$
7,15,00,06,15,18,00,09,20
$$

which encrypts to

$$
28,71,00,41,71,39,00,37,48
$$

b. What is the ("secret") decryption exponent d for this system?

Solution This is the exponent d that satisfies $7 d \equiv 1(\bmod 60)$, where $60=(7-1)(11-$ $1)=(p-1)(q-1)$. Since $\operatorname{gcd}(7,60)=1$, there exists such a d that we can find by applying the extended Euclidean Algorithm:

$$
\begin{aligned}
60 & =8 \cdot 7+4 \\
7 & =1 \cdot 4+3 \\
4 & =1 \cdot 3+1
\end{aligned}
$$

Then we fill in the extended Euclidean Algorithm table as follows

	1	0
	0	1
8	1	-8
1	-1	9
1	2	-17

The equation is $(2)(60)+(-17)(7)=1$ and the multiplicative inverse of 7 is $d \equiv-17 \equiv 43$ $(\bmod 60)$. So $g(x)=x^{43}(\bmod 77)$.
c. Use it to decrypt the cyphertext: " $42,71,23,1,53,10,71,68,47 "$ (Why didn't I actually include spaces between the words here?)
Solution: The cyphertext decrypts to

$$
14,15,23,1,25,10,15,19,5
$$

which corresponds to "NOWAYJOSE." Note that 0 is mapped to itself under both the RSA encryption and decryption functions. So the presence of a bunch of zeroes might be extra information that might lead to breaking the code(!)

' B ' Section

The Euler ϕ-function (or totient) is defined for $n>0$ in \mathbb{Z} by $\phi(n)=$ the number of classes $[a]$ in \mathbb{Z}_{n} for which a multiplicative inverse exists in \mathbb{Z}_{n} (this is the same as the number of a with $0 \leq a<n$ and $\operatorname{gcd}(a, n)=1)$.

1. Find $\phi(11), \phi(16)$, and $\phi(20)$.

Solution: $\phi(11)=10$ since $\{1,2,3,4,5,6,7,8,9,10\}$ are all relatively prime to $11 . \phi(16)=8$ since $\{1,3,5,7,9,11,13,15\}$ are the only integers a with $0 \leq a<16$ that are relatively prime to 16 . Similarly, $\phi(20)=8$, since $\{1,3,7,9,11,13,17,19\}$ the a with $0 \leq a<20$ and $\operatorname{gcd}(a, 20)=1$.
2. Prove that the number of ordered pairs (a, b) for which $f(x)=a x+b(\bmod n)$ defines an invertible affine encryption function on \mathbb{Z}_{n} is $n \cdot \phi(n)$.

Solution: By the proposition about affine encryption functions we proved in class on Wednesday $10 / 31$, we have an inverse function for g as long as $\operatorname{gcd}(a, n)=1$, or equivalently if $[a]^{-1}$ exists in \mathbb{Z}_{n}. There are thus $\phi(n)$ different choices for a. For each of those, there are n choices for b. Hence we have $n \phi(n)$ possible mappings of this form.

On the other hand, note that if $\operatorname{gcd}(a, n)=d>1$, then we claim that $f(x)=a x+b(\bmod n)$ has no inverse function, so it cannot be used as an affine encryption function. This is true because if $\operatorname{gcd}(a, n)=d>1$ with $n=q d$ and $a=s d$ for integers q, s, then $f(0)=b(\bmod n)$ and $f(q)=a q+b=s d q+b=s n+b \equiv b(\bmod n)$, but $q \not \equiv 0(\bmod n)$ so f is not a 1-1 mapping on \mathbb{Z}_{n}. (That says, of course, that f is not suitable as an encryption function because it would map different plaintext symbols to the same cyphertext. In that case, unique decryption is impossible!) This shows that there are exactly $\phi(n) \cdot n$ invertible affine mappings.
3. Show that the set of affine encryption functions is closed under composition.

Solution: Let $f(x)=a x+b(\bmod n)$ and $g(x) \equiv c x+d(\bmod n)$ with $\operatorname{gcd}(a, n)=\operatorname{gcd}(c, n)=$ 1 (see problem 2 above). Then

$$
(f \circ g)(x)=a(c x+d)+b=a c x+(a d+b) \quad(\bmod n) .
$$

This is another mapping of the same form so we have part of what we want. The other thing we must check is that $\operatorname{gcd}(a c, n)=1$ also. We can see this as follows. Since $\operatorname{gcd}(a, n)=1$, there are integers p, q such that $p a+q n=1$. Similarly since $\operatorname{gcd}(c, n)=1$, there are integers r, s such that $r c+s n=1$. If we multiply corresponding sides of these equations we get

$$
1=1 \cdot 1=(p a+q n)(r c+s n)=(p r)(a c)+(p a s+q r c+q n s) n .
$$

Since $p r,(p a s+q r c+q n s) \in \mathbb{Z}$, This implies that $\operatorname{gcd}(a c, n)=1$. (The smallest positive element of the the set $\{P(a c)+Q n \mid P, Q \in \mathbb{Z}\}$ must be 1.)
4. If $n=p q$ where p, q are distinct primes, prove that $\phi(n)=(p-1)(q-1)$.

Solution: The a satisfying $0 \leq a<n$ and $\operatorname{gcd}(a, n)>1$ in the case $n=p q$ are precisely the multiples of p or q. Let

$$
P=\{0, p, 2 p, 3 p, \ldots,(q-1) p\}
$$

and

$$
Q=\{0, q, 2 q, 3 q, \ldots,(p-1) q\} .
$$

There are $q=|P|$ numbers of the first kind and $p=|Q|$ numbers of the second kind. We want the number of elements in $\{0,1, \ldots, n-1\}-(P \cup Q)$. Since 0 is contained in both lists though, this means that the number of a with $\operatorname{gcd}(a, n)=1$ is precisely

$$
p q-(p+q-1)=p q-p-q+1=(p-1)(q-1)
$$

(We could also remove 0 from the start and count like this: There are $p-1$ nonzero multiples of q and $q-1$ nonzero multiples of p in this range. So

$$
\phi(p q)=(p q-1)-(p-1)-(q-1)=p q-p-q+1=(p-1)(q-1)
$$

as before.
5. If $n=p^{e}$ where p is prime and $e \geq 1$, then show $\phi(n)=p^{e}-p^{e-1}=p^{e-1}(p-1)$.

Solution: The idea is similar to that of question 4. The numbers a in $0 \leq a<p^{e}$ that are not relatively prime to $n=p^{e}$ are precisely the multiples of p in this range. The largest k such that $k p<p^{e}$ is $k=p^{e-1}-1$. So we must take out the numbers in $\{0, p, 2 p, \ldots, p$. $\left.p, \cdots,\left(p^{e-1}-1\right) p\right\}$ to count $\phi\left(p^{e}\right)$. There are p^{e-1} elements in this set and we want the complement in $\left\{0,1, \ldots, p^{e}-1\right\}$ Hence the number is

$$
\phi\left(p^{e}\right)=p^{e}-p^{e-1}=p^{e-1}(p-1) .
$$

