
Mathematics 243, section 3 – Algebraic Structures
Solutions for Problem Set 7

‘A’ Section

1. If we are using an affine cypher and we want to include more symbols in our plaintext messages
than just the capital letters and a blank space as in the examples we did in class, then we
can do that by increasing the modulus m for the numerical form of our plain and cypher
text. For this problem, say we want to include the letters A,B,C, . . . , Z, the space , and the
apostrophe, comma, period, and question mark. Then we can use Z31 as the numerical form
of our alphabet, and make A ↔ 0, B ↔ 1, . . . , Z ↔ 25, the space be 26, the apostrophe be
27, the comma be 28, the period be 29, and the question mark be 30.

a. Use the affine encryption function f(x) = 7x + 20 (mod 31) to encrypt the plaintext
message “Are we on for today?” Give the cyphertext in literal form (using the same
alphabet).

Solution: In numerical form, the plain text is:

0, 17, 4, 26, 22, 4, 26, 14, 13, 26, 5, 14, 17, 26, 19, 15, 3, 0, 24, 30

Applying f to each in turn we get

20, 15, 17, 16, 19, 17, 16, 25, 18, 16, 24, 25, 15, 16, 29, 1, 10, 20, 2, 13

For instance, the second symbol of the plain text is R ↔ 17. This maps to

f(17) = 7 · 17 + 20 = 139 ≡ 15 (mod 31)

since 139 = 4 · 31 + 15 by division.

b. What is the decryption function g = f−1 for this f?

Solution: We want g(x) = Ax + B (mod 31) such that g(f(x)) ≡ x (mod 31) for all
[x] ∈ Z31. This will be true if 7A ≡ 1 (mod 31) and B ≡ −20A (mod 31). We find A

via the extended Euclidean Algorithm:

31 = 4 · 7 + 3

6 = 2 · 3 + 1.

Then we fill in the extended Euclidean Algorithm table as follows

1 0
0 1

4 1 −4
2 −2 9

which shows that [A] = [7]−1 = [9] in Z31. Then B ≡ −180 ≡ 6 (mod 31). So g(x) =
9x + 6 (mod 31). Then A ≡ (mod 31)
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c. Use the decryption function to decrypt the cyphertext “SZQOQDUSW.” (Note: the
period at the end is part of the cypher text.)

Solution: The cyphertext converts to numerical form as:

18, 25, 16, 14, 16, 3, 20, 18, 23, 29

Applying the decryption function g(x) = 9x + 6 (mod 31) to each number in turn, we
get

13, 14, 26, 8, 26, 2, 0, 13, 27, 19

which corresponds to the plain text “NO I CAN’T”

2. Suppose an RSA public key cryptosystem has m = 7 · 11 = 77, and an encryption exponent
e = 7 is used. Use the 27-letter alphabet (space = 0). from our examples in class and two-digit
blocks.

a. Encrypt the plaintext message “GO FOR IT” using this system (Note: the cyphertext
will be in numerical, not literal form.)

Solution: The RSA encryption function is f(x) = xe = x7 (mod 77) The plain text (as
blocks of length 2) is

7, 15, 00, 06, 15, 18, 00, 09, 20

which encrypts to
28, 71, 00, 41, 71, 39, 00, 37, 48

b. What is the (“secret”) decryption exponent d for this system?

Solution This is the exponent d that satisfies 7d ≡ 1 (mod 60), where 60 = (7− 1)(11−
1) = (p − 1)(q − 1). Since gcd(7, 60) = 1, there exists such a d that we can find by
applying the extended Euclidean Algorithm:

60 = 8 · 7 + 4

7 = 1 · 4 + 3

4 = 1 · 3 + 1

Then we fill in the extended Euclidean Algorithm table as follows

1 0
0 1

8 1 −8
1 −1 9
1 2 −17

The equation is (2)(60)+(−17)(7) = 1 and the multiplicative inverse of 7 is d ≡ −17 ≡ 43
(mod 60). So g(x) = x43 (mod 77).
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c. Use it to decrypt the cyphertext: ”42, 71, 23, 1, 53, 10, 71, 68, 47” (Why didn’t I
actually include spaces between the words here?)

Solution: The cyphertext decrypts to

14, 15, 23, 1, 25, 10, 15, 19, 5

which corresponds to “NOWAYJOSE.” Note that 0 is mapped to itself under both the
RSA encryption and decryption functions. So the presence of a bunch of zeroes might
be extra information that might lead to breaking the code(!)

‘B’ Section

The Euler φ-function (or totient) is defined for n > 0 in Z by φ(n) = the number of classes
[a] in Zn for which a multiplicative inverse exists in Zn (this is the same as the number of a with
0 ≤ a < n and gcd(a, n) = 1).

1. Find φ(11), φ(16), and φ(20).

Solution: φ(11) = 10 since {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} are all relatively prime to 11. φ(16) = 8
since {1, 3, 5, 7, 9, 11, 13, 15} are the only integers a with 0 ≤ a < 16 that are relatively
prime to 16. Similarly, φ(20) = 8, since {1, 3, 7, 9, 11, 13, 17, 19} the a with 0 ≤ a < 20 and
gcd(a, 20) = 1.

2. Prove that the number of ordered pairs (a, b) for which f(x) = ax + b (mod n) defines an
invertible affine encryption function on Zn is n · φ(n).

Solution: By the proposition about affine encryption functions we proved in class on Wednes-
day 10/31, we have an inverse function for g as long as gcd(a, n) = 1, or equivalently if [a]−1

exists in Zn. There are thus φ(n) different choices for a. For each of those, there are n choices
for b. Hence we have nφ(n) possible mappings of this form.

On the other hand, note that if gcd(a, n) = d > 1, then we claim that f(x) = ax+ b (mod n)
has no inverse function, so it cannot be used as an affine encryption function. This is true
because if gcd(a, n) = d > 1 with n = qd and a = sd for integers q, s, then f(0) = b (mod n)
and f(q) = aq+b = sdq+b = sn+b ≡ b (mod n), but q 6≡ 0 (mod n) so f is not a 1-1 mapping
on Zn. (That says, of course, that f is not suitable as an encryption function because it would
map different plaintext symbols to the same cyphertext. In that case, unique decryption is
impossible!) This shows that there are exactly φ(n) · n invertible affine mappings.

3. Show that the set of affine encryption functions is closed under composition.

Solution: Let f(x) = ax+b (mod n) and g(x) ≡ cx+d (mod n) with gcd(a, n) = gcd(c, n) =
1 (see problem 2 above). Then

(f ◦ g)(x) = a(cx + d) + b = acx + (ad + b) (mod n).
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This is another mapping of the same form so we have part of what we want. The other thing
we must check is that gcd(ac, n) = 1 also. We can see this as follows. Since gcd(a, n) = 1,
there are integers p, q such that pa + qn = 1. Similarly since gcd(c, n) = 1, there are integers
r, s such that rc + sn = 1. If we multiply corresponding sides of these equations we get

1 = 1 · 1 = (pa + qn)(rc + sn) = (pr)(ac) + (pas + qrc + qns)n.

Since pr, (pas + qrc + qns) ∈ Z, This implies that gcd(ac, n) = 1. (The smallest positive
element of the the set {P (ac) + Qn | P,Q ∈ Z} must be 1.)

4. If n = pq where p, q are distinct primes, prove that φ(n) = (p − 1)(q − 1).

Solution: The a satisfying 0 ≤ a < n and gcd(a, n) > 1 in the case n = pq are precisely the
multiples of p or q. Let

P = {0, p, 2p, 3p, . . . , (q − 1)p}

and
Q = {0, q, 2q, 3q, . . . , (p − 1)q}.

There are q = |P | numbers of the first kind and p = |Q| numbers of the second kind. We
want the number of elements in {0, 1, . . . , n− 1}− (P ∪Q). Since 0 is contained in both lists
though, this means that the number of a with gcd(a, n) = 1 is precisely

pq − (p + q − 1) = pq − p − q + 1 = (p − 1)(q − 1).

(We could also remove 0 from the start and count like this: There are p−1 nonzero multiples
of q and q − 1 nonzero multiples of p in this range. So

φ(pq) = (pq − 1) − (p − 1) − (q − 1) = pq − p − q + 1 = (p − 1)(q − 1),

as before.

5. If n = pe where p is prime and e ≥ 1, then show φ(n) = pe − pe−1 = pe−1(p − 1).

Solution: The idea is similar to that of question 4. The numbers a in 0 ≤ a < pe that are
not relatively prime to n = pe are precisely the multiples of p in this range. The largest k

such that kp < pe is k = pe−1 − 1. So we must take out the numbers in {0, p, 2p, . . . , p ·
p, · · · , (pe−1 − 1)p} to count φ(pe). There are pe−1 elements in this set and we want the
complement in {0, 1, . . . , pe − 1} Hence the number is

φ(pe) = pe − pe−1 = pe−1(p − 1).
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