Mathematics 243, section 3 - Algebraic Structures
 Solutions for Problem Set 5
 due: October 19, 2012

'A'Section

1. Apply the division algorithm to find q, r satisfying $a=q b+r$ and $0 \leq r<b$:
a. $a=326, b=17$

Solution: $326=19 \cdot 17+3$, so $q=19$ and $r=3$.
b. $a=1245, b=249$

Solution: $1245=5 \cdot 249$, so $q=5$ and $r=0$. (Note this shows 249|1245).
c. $a=-3432, b=29$.

Solution: $-3432=-119 \cdot 29+19$, so $q=-119$ and $r=19$.
2. a. Find all the positive common divisors of $a=240$ and $b=450$. (Hint: Factoring a, b as much as possible may be helpful here.)
Solution: We have $240=2^{4} \cdot 3 \cdot 5$ and $450=2 \cdot 3^{2} \cdot 5^{2}$. So the common divisors of 240 and 450 are $1,2,3,5,6,10,15,30$.
b. What is the smallest positive element of the set

$$
S=\{240 m+450 n \mid m, n \in \mathbb{Z}\} ?
$$

Solution: By Theorem 2.12, this number is $\operatorname{gcd}(240,450)=30$.
c. Apply the Euclidean algorithm to find $\operatorname{gcd}(240,450)$. What are the integers m, n such that $240 m+450 n=\operatorname{gcd}(240,450)$?
Solution: Computing by the Euclidean process:

$$
\begin{aligned}
& 450=1 \cdot 240+210 \\
& 240=1 \cdot 210+30 \\
& 210=7 \cdot 30+0 .
\end{aligned}
$$

The last nonzero remainder is 30 , so $\operatorname{gcd}(240,450)=30$. By the "back-substitution" method, we have

$$
\begin{aligned}
30 & =240-1 \cdot 210 \\
& =240-1 \cdot(450-1 \cdot 240) \\
& =2 \cdot 240+(-1) \cdot 450 .
\end{aligned}
$$

So $m=2$ and $n=-1$.
3. Repeat all the parts of question 2 for $a=2312$ and $b=584$.
a. Find all the positive common divisors of $a=2312$ and $b=584$. (Hint: Factoring a, b as much as possible may be helpful here.)
Solution: We have $2312=2^{3} \cdot 17^{2}$ and $584=2^{3} \cdot 73$. So the common divisors of 2312 and 584 are $1,2,4,8$.
b. What is the smallest positive element of the set

$$
S=\{2312 m+584 n \mid m, n \in \mathbb{Z}\} ?
$$

Solution: By Theorem 2.12, this number is $\operatorname{gcd}(2312,584)=8$.
c. Apply the Euclidean algorithm to find $\operatorname{gcd}(2312,584)$. What are the integers m, n such that $584 m+2312 n=\operatorname{gcd}(2312,584)$?
Solution: Computing by the Euclidean process:

$$
\begin{aligned}
2312 & =3 \cdot 584+560 \\
584 & =1 \cdot 560+24 \\
560 & =23 \cdot 24+8 \\
24 & =3 \cdot 8+0 .
\end{aligned}
$$

The last nonzero remainder is 8 , so $\operatorname{gcd}(2312,584)=8$. By the "back-substitution" method, we have

$$
\begin{aligned}
8 & =560-23 \cdot 24 \\
& =560-23 \cdot(584-1 \cdot 560) \\
& =24 \cdot 560-23 \cdot 584 \\
& =24 \cdot(2312-3 \cdot 584)-23 \cdot 584 \\
& =24 \cdot 2312-95 \cdot 584 .
\end{aligned}
$$

So $n=-95$ and $m=24$.

' B ' Section

1. Let f, g, h be permutations of a set A. In this problem, the notation $h^{0}=I_{A}$, the identity mapping on A, and for $n \geq 1, h^{n}$ means the n-fold composition of h with itself:

$$
h^{n}=h \circ h \circ \cdots \circ h \quad(n \text { copies of } h) .
$$

a. Show by mathematical induction that h^{n} is a permutation of A for all $n \geq 0$. You may use facts we proved before here; look back at Chapter 1 or your notes as necessary.

Solution: The base case here is $n=0$ and $h^{0}=I_{A}$ by definition. This is a permutation of A since it is one-to-one and onto. Now assume that h^{k} is a permutation and consider $h^{k+1}=h^{k} \circ h$. By the induction hypothesis this is a composition of permutations of A. But every composition of permutations of A is also a permutation of A by Theorems 1.16 and 1.17 (in the special case that $A=B=C$).
b. Show that for all $n \geq 1$

$$
\left(f \circ g \circ f^{-1}\right)^{n}=f \circ g^{n} \circ f^{-1}
$$

Solution: When $n=1$, there is nothing to prove, since $f \circ g \circ f^{-1}=f \circ g \circ f^{-1}$. So the base case is established. Now assume that $\left(f \circ g \circ f^{-1}\right)^{k}=f \circ g^{k} \circ f^{-1}$ and consider $\left(f \circ g \circ f^{-1}\right)^{k+1}$:

$$
\begin{aligned}
\left(f \circ g \circ f^{-1}\right)^{k+1} & =\left(f \circ g \circ f^{-1}\right)^{k} \circ\left(f \circ g \circ f^{-1}\right) \text { by the def. } \\
& =\left(f \circ g^{k} \circ f^{-1}\right) \circ\left(f \circ g \circ f^{-1}\right) \text { by the induction hypothesis } \\
& =f \circ g^{k} \circ\left(f^{-1} \circ f\right) \circ g \circ f^{-1} \text { by associativity of composition } \\
& =f \circ g^{k} \circ I_{A} \circ g \circ f^{-1} \text { by definition of inverse mappings } \\
& =f \circ g^{k} \circ g \circ f^{-1} \text { by associativity and identity } \\
& =f \circ g^{k+1} \circ f^{-1} \text { by definition. }
\end{aligned}
$$

Hence the formula is true for all $n \geq 1$ by induction.
2. Let $a, b, c, d \in \mathbb{Z}$.
a. Show that if $a \mid c$ and $b \mid d$, then $(a b) \mid(c d)$.

Solution: If $a \mid c$ then there is some integer k such that $c=a k$. Similarly, since $b \mid d$, there is some integer ℓ such that $d=b \ell$. Hence $c d=(a k)(b \ell)=(a b)(k \ell)$ by associativity and commutativity of multiplication in \mathbb{Z}. Since $k \ell \in \mathbb{Z}$, this shows $(a b) \mid(c d)$.
b. Is it true that $a \mid(b c)$ implies $a \mid b$ or $a \mid c$? Prove or give a counterexample.

Solution: This is not true. A counterexample: Let $a=4, b=6, c=10$. Then $4 \mid 60$ is true, but 4 does not divide either 6 or 10 .
c. Give two different proofs that $(a-b) \mid\left(a^{n}-b^{n}\right)$ for all $n \geq 1$, one using mathematical induction, one not using mathematical induction.
Solution: Induction proof: The statement is clearly true for $n=1$, so the base case is established. Assume that $(a-b) \mid\left(a^{k}-b^{k}\right)$ and consider $a^{k+1}-b^{k+1}$. We can apply the induction hypothesis by rewriting this by "adding zero," then rearranging:

$$
\begin{aligned}
a^{k+1}-b^{k+1} & =a^{k+1}-a^{k} b+a^{k} b-b^{k+1} \\
& =a^{k}(a-b)+b\left(a^{k}-b^{k}\right)
\end{aligned}
$$

By the induction hypothesis $a-b$ divides $a^{k}-b^{k}$ and $a-b$ clearly divides the first part. Hence by a result proved in class, it follows that $(a-b)$ divides the sum and hence $(a-b) \mid\left(a^{k+1}-b^{k+1}\right)$. This proves the statement by induction.

Noninduction proof: First we show the factorization formula for a difference of like powers. We claim:

$$
a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}\right)
$$

This is true because if we start on the right and expand out using the distributive law we get

$$
\begin{aligned}
(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}\right)= & a^{n}+a^{n-1} b+\cdots+a^{2} b^{n-2}+a b^{n-1} \\
& \quad-a^{n-1} b-\cdots-a b^{n-1}-b^{n} \\
= & a^{n}-b^{n}
\end{aligned}
$$

since all the terms except the a^{n} and the $-b^{n}$ cancel in pairs. Now, in the factored form, the second factor in the formula is in \mathbb{Z} because a, b are. So this shows $(a-b) \mid\left(a^{n}-b^{n}\right)$.
d. Show that $(a+b) \mid\left(a^{2 n}-b^{2 n}\right)$ for all $n \geq 1$.

Solution: (This can be proved in a number of ways. The "slickest" is this one:) Apply the result of part c with a replaced by a^{2} and b replaced by b^{2}. Since $\left(a^{2}\right)^{n}=a^{2 n}$ and similarly for b, this gives the statement that

$$
\left(a^{2}-b^{2}\right) \mid\left(a^{2 n}-b^{2 n}\right)
$$

But by the difference of squares factorization, $a^{2}-b^{2}=(a+b)(a-b)$, so $a+b$ divides $a^{2 n}-b^{2 n}$.
3. Suppose $a, b>0$ and $a=q b+r$ by the division algorithm in \mathbb{Z}. What are the quotient and remainder on division of $-a$ by b ? Express in terms of q and r, and prove your result.

Solution: If $a=q b+r$ by the division algorithm, then we can multiply both sides of that equation by -1 to get $-a=(-q) b+(-r)$. However, since $0 \leq r<b$, unless $r=0$, the number $-r$ will not be in the proper range of values for the remainder on division by b. To get a remainder in the proper range of values, we just need to note that if $r \neq 0$, then $-b<-r<0$, so $0<-r+b<b$. Hence From $-a=(-q) b+(-r)$, we want to rearrange the right side by adding and subtracting b :

$$
-a=(-q-1) b+(-r+b) .
$$

So by uniqueness of quotient and remainder, if $r \neq 0$, the quotient on division of $-a$ by b is $-(q+1)$, and the remainder is $-r+b$. If $r=0$, then the new quotient is just $-q$ and the remainder is still 0 for $-a$. So the conclusion (and what we have proved above) is: If $a=q b+r$, then $-a=q^{\prime} b+r^{\prime}$, where

$$
q^{\prime}=\left\{\begin{array}{ll}
-q & \text { if } r=0 \\
-(q+1) & \text { if } r \neq 0,
\end{array} \quad r^{\prime}= \begin{cases}0 & \text { if } r=0 \\
b-r & \text { if } r \neq 0\end{cases}\right.
$$

4. Show that if $a, b, c \in \mathbb{Z}$, then $\operatorname{gcd}(\operatorname{gcd}(a, b), c)=\operatorname{gcd}(a, \operatorname{gcd}(b, c))$.

Solution: (Comment: We actually need some additional hypothesis like at least one of a, b, c nonzero here to guarantee that the gcd's exist.) Method 1: Let $d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$. We want to show that this integer satisfies the right properties to be $\operatorname{gcd}(a, \operatorname{gcd}(b, c))$ (from the definition of a gcd) as well. First, since d is a gcd of two integers, $d \in \mathbb{Z}^{+}$, so the first requirement is true. Next, $d \mid \operatorname{gcd}(a, b)$ and $d \mid c$ by definition. Since $d \mid \operatorname{gcd}(a, b)$, it also follows that $d \mid a$ and $d \mid b$. Then since $d \mid b$ and $d \mid c$, we have $d \mid \operatorname{gcd}(b, c)$. This shows the second requirement is true. Finally, suppose e is any common divisor of a and $\operatorname{gcd}(b, c)$, so $e \mid a$ and $e \mid \operatorname{gcd}(b, c)$. Since e divides $\operatorname{gcd}(b, c), e \mid b$ and $e \mid c$. But then e is a common divisor of a, b so $e \mid \operatorname{gcd}(a, b)$ But then since e divides $\operatorname{gcd}(a, b)$ and $c, e \mid \operatorname{gcd}(\operatorname{gcd}(a, b), c)$ also. This shows $e \mid d$. Hence $d=\operatorname{gcd}(a, \operatorname{gcd}(b, c))$.

Solution: Method 2: An alternate method is to show that if we let $d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$ and $d^{\prime}=\operatorname{gcd}(a, \operatorname{gcd}(b, c))$, then $d \mid d^{\prime}$ and $d^{\prime} \mid d$. If we know that, then $d=d^{\prime}$ follows since $d, d^{\prime}>0$ by the definition of a gcd. If $d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$, then $d \mid \operatorname{gcd}(a, b)$ and $d \mid c$, so it follows that $d|a, d| b, d \mid c$. But then by definition of a gcd, $d \mid a$ and $d \mid \operatorname{gcd}(b, c)$. Hence $d \mid d^{\prime}$. The proof that $d^{\prime} \mid d$ is similar.
5. Suppose $\operatorname{gcd}(a, b)=1$. Is it true that the integers m, n such that $m a+n b=1$ guaranteed in Theorem 2.12 also satisfy $\operatorname{gcd}(m, n)=1$? Prove or give a counterexample.

Solution: If $\operatorname{gcd}(a, b)=1$, then there are $m, n \in \mathbb{Z}$ such that $m a+n b=1$ by Theorem 2.12. However, this also says that the smallest positive element of the set

$$
S=\{p m+q n \mid p, q \in \mathbb{Z}\}
$$

is 1 , since we get 1 by taking $p=a$ and $q=b$. Hence by the proof of Theorem 2.12, $1=\operatorname{gcd}(m, n)$ as well.

