Mathematics 243, section 3 - Algebraic Structures
 Solutions for Problem Set 4
 due: October 5, 2012

'A'Section

1. Consider the following relations defined on the set \mathbb{Z}. In each case, say whether the relation is reflexive, symmetric, transitive. Justify your answers.
a. $x R y$ if and only if $(-1)^{x}=(-1)^{y}$

Solution: We see

$$
(-1)^{x}= \begin{cases}+1 & \text { if } x \text { is even } \\ -1 & \text { if } x \text { is odd }\end{cases}
$$

Hence $x R x$ is true for all x, so R is reflexive. Similarly, if $x R y$ then x, y are both even or both odd. So $y R x$ follows, and R is symmetric. Finally R is transitive since $x R y$ and $y R z$ imply x, y, z are either all even or all odd.
b. $x R y$ if and only if $x \cdot y \geq 0$

Solution: $x R x$ is true for all $x \in \mathbb{Z}$, since $x^{2} \geq 0$. So R is reflexive. Similarly, R is symmetric since multiplication in \mathbb{Z} is commutative, so $x y=y x$ and if $x y \geq 0, y x \geq 0$ too. R is not transitive since for instance (1) $R(0)$ is true and (0$) R(-1)$ is true, but (1) $R(-1)$ is not true.
c. $x R y$ if and only if $|x-y| \leq 2$

Solution: This is similar to b in the sense that this relation is reflexive since $|x-x|=0 \leq 2$ for all x, and symmetric since $|x-y|=|y-x|$ for all $x, y \in \mathbb{Z}$. But it is not transitive, since for example $(-2) R(0)$ is true since $|(-2)-0|=2 \leq 2$ and $(0) R(2)$ is true since $|0-2|=2 \leq 2$, but $(-2) R(2)$ is not true since $|-2-2|=4$.
d. $x R y$ if and only if x has the same number of base 10 digits as y, ignoring signs of x, y.

Solution: This is reflexive - every x has the same number of base 10 digits as itself. Similarly, it is symmetric since if x has the same number of digits as y, then y has the same number of digits as x. It is also transitive, since if x and y have the same number of digits and y and z have the same number of digits, then so do x and z.
e. $x R y$ if and only if the sum of the base 10 digits of x is the same as the sum of the base 10 digits of y, ignoring signs of x, y.
Solution: This is reflexive, symmetric, and transitive as in part d (just replace "number of digits" by "sum of digits" everywhere).
2. Which of the relations in question 1 are equivalence relations? For those that are, say exactly which integers make up the equivalence class [11] using correct set notation.

Solution: From the answers to question 1, the relation in a is an equivalence relation and

$$
[11]=\{m \in \mathbb{Z} \mid m \text { is odd }\}
$$

The relation in d is also an equivalence relation. The equivalence class of [11] consists of all positive or negative integers that have the exactly two digits in their base 10 forms:

$$
[11]=\{ \pm 10, \pm 11, \pm 12, \ldots, \pm 99\} .
$$

Finally, the relation in part e is also an equivalence relation. The class of 11 consists of all numbers whose digits add up to 2 :

$$
[11]=\{ \pm 2, \pm 20, \pm 200, \ldots, \pm 11, \pm 101, \pm 110, \ldots\}
$$

(Note: there can be any number of 0 digits in these.)
3. Let R be the relation on \mathbb{Z} defined by $x R y$ if and only if $4 x-15 y$ is a multiple of 11 . Show that R is an equivalence relation and describe all of the equivalence classes for R.

Solution: For all integers $x, x R x$ is true since $4 x-15 x=11 \cdot(-x)$ is a multiple of 11 . Hence R is reflexive. If $x R y$, then $4 x-15 y=11 k$ for some integer k. But then $4 y-15 x=$ $-(4 x-15 y)-11 x-11 y=11(-k-x-y)$ is a multiple of 11 , so $y R x$ follows. Hence R is symmetric. Finally, if $x R y$ and $y R z$ then $4 x-15 y=11 k$ and $4 y-15 z=11 \ell$ for some integers k, ℓ. But then $4 x-15 y+4 y-15 z=11(k+\ell)$, so $4 x-15 z=11(k+\ell+y)$ is also a multiple of 11. It follows that $x R z$ is true, so R is transitive. This shows that R is an equivalence relation.
The equivalence class of any $x \in \mathbb{Z}$ is the set

$$
[x]=\{y \mid x R y\}=\{y \mid 4 x-15 y=11 k, \text { for some integer } k\}
$$

It can be seen that there are only 11 different classes:

$$
\begin{aligned}
{[0] } & =\{\ldots,-22,-11,0,11,22, \ldots\} \\
{[1] } & =\{\ldots,-21,-10,1,12,23, \ldots\} \\
& \vdots \\
{[10] } & =\{\ldots,-12,-1,10,21,32, \ldots\}
\end{aligned}
$$

4. Decide whether each of the following statements is true. For those that are true, give a short proof using the postulates for \mathbb{Z} given in $\S 2.1$ of the text. For those that are false, give a counterexample.
a. If $x y=x z$ for integers x, y, z, then $y=z$.

Solution: This is false: let $x=0, y=1, z=2$.
b. If $x<y$, then $x^{2}<y^{2}$.

Solution: This is also false: Let $x=-3$ and $y=2$. Then $x<y$, but $x^{2}>y^{2}$.
c. If $z-x<z-y$, then $y<x$.

Solution: This is true. If $z-y>z-x$, then $(z-y)-(z-x) \in \mathbb{Z}^{+}$. But that says $x-y \in \mathbb{Z}^{+}$, so by the definition of the order relation $x>y$.

' B ' Section

1. In class we showed that the distinct equivalence classes of an equivalence relation R on a set A give a partition of A. Conversely, suppose

$$
A=\bigcup_{\lambda \in \mathcal{L}} A_{\lambda}
$$

is a partition of A. Show that the relation R on A defined by $a R a^{\prime}$ if and only if a, a^{\prime} are both elements of the same subset A_{λ} is an equivalence relation.

Solution: Let $a \in A$. Then a is contained in only one of the A_{λ}, since they form partition. That implies $a R a$ is true, and R is reflexive. Next, suppose $x R y$. That means that x and y are in the same set in the partition, so it follows that y and x are also in the same set. Hence $y R x$ is also true and R is symmetric. Finally, if $x R y$ and $y R z$ are both true then x, y, z are all in the same set in the partition so $x R z$ is also true. This shows R is transitive too, hence an equivalence relation.
2. In both parts of this problem, you will be working in \mathbb{Z}, using the postulates from $\S 2.1$
a. Show that if $x \cdot y=0$, then $x=0$ or $y=0$. (Hint: Argue by contraposition. By the trichotomy postulate 4 , if $x \neq 0$, then $x \in \mathbb{Z}^{+}$or $-x \in \mathbb{Z}^{+}$, and the same is true for y.)
Solution: We want to show that if $x \neq 0$ and $y \neq 0$, then $x y \neq 0$. By postulate 4 in the book's numbering, if $x \neq 0$, then $x \in \mathbb{Z}^{+}$or $-x \in \mathbb{Z}^{+}$. Similarly, $y \in \mathbb{Z}^{+}$or $-y \in \mathbb{Z}^{+}$. There are four possible combinations of statements that can be true here. If $x \in \mathbb{Z}^{+}$and $y \in \mathbb{Z}^{+}$, then $x y \in \mathbb{Z}^{+}$by postulate 4 b . If $-x \in \mathbb{Z}^{+}$and $y \in \mathbb{Z}^{+}$, then $(-x) y \in \mathbb{Z}^{+}$by postulate 4 b . But $(-x) y=-(x y) \in \mathbb{Z}^{+}$by Theorem 2.2, and then $x y \neq 0$. Similarly, $x \in \mathbb{Z}^{+}$and $-y \in \mathbb{Z}^{+}$, then $x(-y) \in \mathbb{Z}^{+}$by postulate 4 b . But $x(-y)=(-y) x=-(y x) \in \mathbb{Z}^{+}$by Theorem 2.2, and then $y x=x y \neq 0$. Finally, $-x \in \mathbb{Z}^{+}$ and $-y \in \mathbb{Z}^{+}$, then $(-x)(-y) \in \mathbb{Z}^{+}$by postulate 4 b . But $(-x)(-y)=x y \in \mathbb{Z}^{+}$by Exercise 5 in this section of the book (proof follows same idea as the proof $(-1)(-1)=1$ done in class) and then $x y \neq 0$.
b. From part a, deduce the cancellation law in \mathbb{Z} : If $x \cdot y=x \cdot z$ and $x \neq 0$, then $y=z$. Solution: If $x \cdot y=x \cdot z$, then $x \cdot(y-z)=0$. We are assuming $x \neq 0$, so part a implies $y-z=0$, and hence $y=z$.
3. Prove by mathematical induction:
a. For all $n \in \mathbb{Z}^{+}$,

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

Solution: The base case here is $n=1$. The formula is true in that case because $1^{2}=$ $1=\frac{1 \cdot 2 \cdot 3}{6}$. Now assume the formula is true for $k \in \mathbb{Z}$, and consider the case $n=k+1$. We have, using the induction hypothesis and some algebra:

$$
\begin{aligned}
1^{2}+2^{2}+\cdots+(k+1)^{2} & =\left(1^{2}+2^{2}+\cdots+k^{2}\right)+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{(k+1)\left(2 k^{2}+k+6(k+1)\right)}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6}
\end{aligned}
$$

which is what we wanted to show since

$$
\frac{(k+1)(k+2)(2 k+3)}{6}=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} .
$$

b. For all $n \in \mathbb{Z}^{+}$,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

Solution: The base case here is $n=1$. The formula is true in that case because $\frac{1}{1 \cdot 2}=$ $\frac{1}{2}=\frac{1}{1+1}$. Now assume the formula is true for $k \in \mathbb{Z}$, and consider the case $n=k+1$. We have, using the induction hypothesis and some algebra:

$$
\begin{aligned}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(k+1)(k+2)} & =\left(\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{k(k+1)}\right)+\frac{1}{(k+1)(k+2)} \\
& =\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)+1}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)^{2}}{(k+1)(k+2)} \\
& =\frac{k+1}{k+2},
\end{aligned}
$$

which is what we wanted to show since

$$
\frac{k+1}{k+2}=\frac{k+1}{(k+1)+1} .
$$

c. For all $n \geq 2, n^{3}>1+2 n$.

Solution: The base case is $n=2$, and the inequality is true in that case since $8>5$. Now assume $k^{3}>1+2 k$ and consider $(k+1)^{3}=k^{3}+3 k^{2}+3 k+1 \mathrm{By}$ the induction hypothesis, we see $(k+1)^{3}>1+2 k+3 k^{2}+3 k+1>1+2(k+1)$, since $3 k^{2}+3 k+1>3 k+1>2$ for all $k \geq 2$.
d. If $|A|=n$, then $|\mathcal{P}(A)|=2^{n}$. (Hint: For the induction step, let $A=\left\{a_{1}, \ldots, a_{k}, a_{k+1}\right\}$. Every subset of A is of one of two types - the ones containing a_{k+1} and the ones not containing a_{k+1}. Count the number of subsets of each type by using the induction hypothesis.)
Solution: When $n=0, A=\emptyset$ has exactly 1 subset, namely \emptyset. Therefore $|\mathcal{P}(A)|=1=2^{0}$. So the base case is established. Now assume that $|\mathcal{P}(A)|=2^{k}$ whenever $|A|=k$ and consider $A=\left\{a_{1}, \ldots, a_{k}, a_{k+1}\right\}$. Following the hint, note that

$$
\mathcal{P}(A)=S_{1} \cup S_{2}
$$

where $S_{1}=\left\{T \subseteq A \mid a_{k+1} \in T\right\}$ and $S_{2}=\left\{T \subseteq A \mid a_{k+1} \notin T\right\}$. By their definitions, $S_{1} \cap S_{2}=\emptyset$, so

$$
|\mathcal{P}(A)|=\left|S_{1}\right|+\left|S_{2}\right| .
$$

The subsets in S_{2} are in one-to-one correspondence with the subsets of $\left\{a_{1}, \ldots, a_{k}\right\}$. Hence $\left|S_{2}\right|=2^{k}$ by the induction hypothesis. Every subset T in S_{1} contains a_{k+1}, so it can be written as $T=T^{\prime} \cup\left\{a_{k+1}\right\}$, where T^{\prime} is a subset of $\left\{a_{1}, \ldots, a_{k}\right\}$. Distinct $T^{\prime \prime}$ s give distinct T 's so there are exactly as many elements of S_{1} as subsets of $\left\{a_{1}, \ldots, a_{k}\right\}$. By the induction hypothesis again, that number is 2^{k}. Hence

$$
|\mathcal{P}(A)|=\left|S_{1}\right|+\left|S_{2}\right|=2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1} .
$$

Therefore $|\mathcal{P}(A)|=2^{n}$ for all $n \geq 1$ by induction.
4. The binomial coefficients are the numbers

$$
\binom{n}{\ell}=\frac{n!}{\ell!(n-\ell)!}
$$

(where $0!=1$ by convention).
a. Show using the definition that for all ℓ with $1 \leq \ell \leq n$,

$$
\binom{n}{\ell}+\binom{n}{\ell-1}=\binom{n+1}{\ell}
$$

Solution: We have

$$
\binom{n}{\ell}+\binom{n}{\ell-1}=\frac{n!}{\ell!(n-\ell)!}+\frac{n!}{(\ell-1)!(n-\ell+1)!}
$$

The common denominator for these two fractions is $\ell!(n-\ell+1)$!, so adding we have

$$
\frac{n!}{\ell!(n-\ell)!}+\frac{n!}{(\ell-1)!(n-\ell+1)!}=\frac{n!(n-\ell+1+\ell)}{\ell!(n+1-\ell)!}=\frac{(n+1)!}{\ell!(n+1-\ell)!}=\binom{n+1}{\ell} .
$$

b. (The Binomial Theorem) Show by induction that for all $n \geq 1$.

$$
(a+b)^{n}=\sum_{\ell=0}^{n}\binom{n}{\ell} a^{\ell} b^{n-\ell}
$$

(that is, the numbers $\binom{n}{k}$ are exactly the coefficients of the various terms $a^{k} b^{n-k}$ appearing in the expansion of $\left.(a+b)^{n}\right)$.
Solution: The base case $n=1$ follows since $\binom{1}{0}=1=\binom{1}{1}$, and $(a+b)^{1}=a+b=$ $\binom{1}{0} b+\binom{1}{1} a$.
Now assume the theorem has been proved for $n=k$ and consider the case $n=k+1$. We have by the induction hypothesis,

$$
\begin{aligned}
(a+b)^{k+1} & =(a+b)^{k}(a+b) \\
& =\left(\sum_{\ell=0}^{k}\binom{k}{\ell} a^{\ell} b^{k-\ell}\right)(a+b) .
\end{aligned}
$$

Expand the product on the last line using the distributive law and collect like terms. The coefficients of a^{k+1} and b^{k+1} are both equal to 1 by inspection. These match the formula to be proved since $\binom{k+1}{k+1}=\binom{k+1}{0}=1$. Now assume $1 \leq \ell \leq k$. The $a^{\ell} b^{k+1-\ell}$ term comes from

$$
b \cdot\left(a^{\ell} b^{k-\ell} \text { term in first factor }\right)+a \cdot\left(a^{\ell-1} b^{k-(\ell-1)} \text { term in first factor }\right) .
$$

From above (by the induction hypothesis), the coefficient of this term is

$$
\binom{k}{\ell}+\binom{k}{\ell-1}=\binom{k+1}{\ell},
$$

where the right side comes by applying part a of this question. Therefore

$$
(a+b)^{k+1}=\sum_{\ell=0}^{k+1}\binom{k+1}{\ell} a^{\ell} b^{k+1-\ell}
$$

and the result follows by induction.

