
Mathematics 243, section 3 – Algebraic Structures
Solutions for Exam 3 – December 5, 2012

I. In an RSA public key cryptosystem, the public key information is m = 323 and e = 13.
Messages consisting of capital roman letters and blanks are encoded as 3-digit blocks
000, 001, · · · , 026 (with blank = 000, A = 001, B = 002, ... , Z = 026) and encrypted as
3-digit blocks.

A) (15) How would the plaintext symbol N be encrypted?

Solution: The RSA encryption function is f(x) = x13 mod 323. The letter N is
encoded as the integer 14 so we need to compute 1413 mod 323. Applying the repeated
squaring process:

142 ≡ 196 mod 323

144 ≡ 302 mod 323

148 ≡ 118 mod 323

So 1413 ≡ 148 · 144 · 14 ≡ 192 mod 323. The plain text symbol N is encrypted as the
3-digit block 192.

B) (15) What is the (secret) decryption exponent d?

Solution: We have 323 = 19 · 17, so (p − 1)(q − 1) = 18 · 16 = 288. So we want d so
that [13][d] = [1] in Z288. We apply the Euclidean algorithm:

288 = 22 · 13 + 2

13 = 6 · 2 + 1

Then the Extended Euclidean Algorithm table gives

1 0
0 1

22 1 −22
6 −6 133

This shows (−6)(288) + (133)(13) = 1, so d = 133.

II. (20) Let

H =

{

A =

(

a b
0 1

)

| a, b ∈ R and a 6= 0

}

Is H a group under the operation of matrix multiplication? If so, give a proof. If not, say
which of the group properties fail.

Solution: H is a group under matrix multiplication.



1. First, H is closed under matrix products, since if A =

(

a b
0 1

)

and A′ =

(

a′ b′

0 1

)

are in H (so a, a′ 6= 0), then the product

AA′ =

(

a b
0 1

) (

a′ b′

0 1

)

=

(

aa′ ab′ + b
0 1

)

∈ H

(because aa′ 6= 0).
2. Matrix multiplication is associative whenever the products are defined (proved in

class).

3. The identity matrix

(

1 0
0 1

)

∈ H and acts as the identity element for H.

4. The inverse matrix of A =

(

a b
0 1

)

is A−1 =

(

1/a −b/a
0 1

)

∈ H.

So all of the properties of groups are satisfied.

III.
A) (15) Let G be a cyclic group with generator a. Show that every subgroup of G is also

cyclic.

Solution: Let H be the subgroup. If H = {e}, then H = 〈e〉 is cyclic and there
is nothing more to show. If H 6= {e}, then H must contain positive powers of the
generator a, so {n | an ∈ H} ∩ Z

+ 6= ∅. By the Well-Ordering Principle, this set has
a smallest element, say k. We claim that H = 〈ak〉, so H is cyclic. First ak ∈ H, so
〈ak〉 ⊆ H, since H is closed under products and inverses. Next, if an ∈ H, then we
can use the Division Algorithm in Z to write n = qk + r for some r with 0 ≤ r < k.
But notice that ar = an(ak)−q ∈ H. So it follows that r = 0 since k was the smallest
positive integer such that ak ∈ H. This shows H ⊆ 〈ak〉. We have both inclusions so
H = 〈ak〉.

The next parts of this question refer to Z24, which is a cyclic group under addition
mod 24.

B) (10) How many different subgroups does Z24 contain, including Z24 itself and {[0]}?

Solution: There is one subgroup of size d for each divisor d of 24, that is: d =
1, 2, 3, 4, 6, 8, 12, 24. Hence there are 8 of them. Part A) implies all of these subgroups
are cyclic too. One choice of generator for each of the 8 subgroups:

[0], [12], [8], [6], [4], [3], [2], [1],

respectively.

C) (15) Show that if gcd(a, 24) = 1, then φ : Z24 → Z24 defined by φ([x]) = [ax] is a 1-1
and onto group homomorphism.



Solution: gcd(a, 24) = 1 implies that [a] has a multiplicative inverse in Z24. Hence if
φ([x]) = [ax] = [a][x] = [a][y] = [a][y] = φ([y]), then we can multiply both sides by
[a]−1 to get [x] = [y]. That shows φ is 1-1. Similarly, if [y] ∈ Z24 is any class, the
equation φ([x]) = [a][x] = [y] has the solution [x] = [a]−1[y]. Hence φ is onto. Finally
we compute:

φ([x] + [y]) = φ([x + y]) = [a(x + y)] = [ax + ay] = [ax] + [ay] = φ([x]) + φ([y]).

Hence φ is a group homomorphism.

IV. (10) Let G be a group, let H be a subgroup of G, and let a ∈ G be a fixed element.
Let aH = {ah | h ∈ H}. Show that aH is a subgroup of G if and only if a ∈ H.

Solution: If aH is a subgroup of G, then we must have ah = e for some h ∈ H, but then
a = h−1 ∈ H too since H is a subgroup of G and closed under taking inverses. Conversely,
if a ∈ H, then aH ⊆ H since H is closed under products. Moreover, if k ∈ H is arbitrary,
then k = ah ∈ aH for h = a−1k. Therefore H ⊆ aH. This shows that if a ∈ H, then
aH = H so aH is a subgroup of G.

Extra Credit (10) A group G is generated by elements x, y satisfying the relations xn = e,
y2 = e, and yx = xn−1y. Show that all of the elements xℓy for ℓ = 0, 1, . . . , n − 1 have
order 2.

Solution: We must show that (xℓy)(xℓy) = e. We can argue by induction that this is true
for all ℓ ≥ 0 as follows. First, if ℓ = 0, it is given that y2 = e, so the statement is true in
that case. Then suppose we know that (xky)(xky) = e and consider

(xk+1y)(xk+1y) = xk+1(yx)(xky) by associativity

= xk+1(xn−1y)(xky) by the given relations

= (xk+1xn−1y)(xky) by associativity

= (xkxny)(xky) by rules for exponents

= (xky)(xky) by the given relations

= e by the induction hypothesis

It follows that xℓy has order 2 for all ℓ ≥ 0. Since xn = e, we start repeating the same
elements when ℓ = n, though.


