I. In an RSA public key cryptosystem, the public key information is $m=323$ and $e=13$. Messages consisting of capital roman letters and blanks are encoded as 3-digit blocks $000,001, \cdots, 026$ (with blank $=000, A=001, B=002, \ldots, Z=026$) and encrypted as 3 -digit blocks.
A) (15) How would the plaintext symbol N be encrypted?

Solution: The RSA encryption function is $f(x)=x^{13} \bmod 323$. The letter N is encoded as the integer 14 so we need to compute $14^{13} \bmod 323$. Applying the repeated squaring process:

$$
\begin{aligned}
14^{2} & \equiv 196 \bmod 323 \\
14^{4} & \equiv 302 \bmod 323 \\
14^{8} & \equiv 118 \bmod 323
\end{aligned}
$$

So $14^{13} \equiv 14^{8} \cdot 14^{4} \cdot 14 \equiv 192 \bmod 323$. The plain text symbol N is encrypted as the 3-digit block 192.
B) (15) What is the (secret) decryption exponent d ?

Solution: We have $323=19 \cdot 17$, so $(p-1)(q-1)=18 \cdot 16=288$. So we want d so that $[13][d]=[1]$ in \mathbf{Z}_{288}. We apply the Euclidean algorithm:

$$
\begin{aligned}
288 & =22 \cdot 13+2 \\
13 & =6 \cdot 2+1
\end{aligned}
$$

Then the Extended Euclidean Algorithm table gives

	1	0
	0	1
22	1	-22
6	-6	133

This shows $(-6)(288)+(133)(13)=1$, so $d=133$.
II. (20) Let

$$
H=\left\{\left.A=\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a, b \in \mathbf{R} \text { and } a \neq 0\right\}
$$

Is H a group under the operation of matrix multiplication? If so, give a proof. If not, say which of the group properties fail.

Solution: H is a group under matrix multiplication.

1. First, H is closed under matrix products, since if $A=\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right)$ and $A^{\prime}=\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & 1\end{array}\right)$ are in H (so $a, a^{\prime} \neq 0$), then the product

$$
A A^{\prime}=\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a a^{\prime} & a b^{\prime}+b \\
0 & 1
\end{array}\right) \in H
$$

(because $a a^{\prime} \neq 0$).
2. Matrix multiplication is associative whenever the products are defined (proved in class).
3. The identity matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in H$ and acts as the identity element for H.
4. The inverse matrix of $A=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$ is $A^{-1}=\left(\begin{array}{cc}1 / a & -b / a \\ 0 & 1\end{array}\right) \in H$.

So all of the properties of groups are satisfied.
III.
A) (15) Let G be a cyclic group with generator a. Show that every subgroup of G is also cyclic.

Solution: Let H be the subgroup. If $H=\{e\}$, then $H=\langle e\rangle$ is cyclic and there is nothing more to show. If $H \neq\{e\}$, then H must contain positive powers of the generator a, so $\left\{n \mid a^{n} \in H\right\} \cap \mathbf{Z}^{+} \neq \emptyset$. By the Well-Ordering Principle, this set has a smallest element, say k. We claim that $H=\left\langle a^{k}\right\rangle$, so H is cyclic. First $a^{k} \in H$, so $\left\langle a^{k}\right\rangle \subseteq H$, since H is closed under products and inverses. Next, if $a^{n} \in H$, then we can use the Division Algorithm in \mathbf{Z} to write $n=q k+r$ for some r with $0 \leq r<k$. But notice that $a^{r}=a^{n}\left(a^{k}\right)^{-q} \in H$. So it follows that $r=0$ since k was the smallest positive integer such that $a^{k} \in H$. This shows $H \subseteq\left\langle a^{k}\right\rangle$. We have both inclusions so $H=\left\langle a^{k}\right\rangle$.

The next parts of this question refer to \mathbf{Z}_{24}, which is a cyclic group under addition $\bmod 24$.
B) (10) How many different subgroups does \mathbf{Z}_{24} contain, including \mathbf{Z}_{24} itself and $\{[0]\}$?

Solution: There is one subgroup of size d for each divisor d of 24 , that is: $d=$ $1,2,3,4,6,8,12,24$. Hence there are 8 of them. Part A) implies all of these subgroups are cyclic too. One choice of generator for each of the 8 subgroups:

$$
[0],[12],[8],[6],[4],[3],[2],[1],
$$

respectively.
C) (15) Show that if $\operatorname{gcd}(a, 24)=1$, then $\phi: \mathbf{Z}_{24} \rightarrow \mathbf{Z}_{24}$ defined by $\phi([x])=[a x]$ is a 1-1 and onto group homomorphism.

Solution: $\operatorname{gcd}(a, 24)=1$ implies that $[a]$ has a multiplicative inverse in \mathbf{Z}_{24}. Hence if $\phi([x])=[a x]=[a][x]=[a][y]=[a][y]=\phi([y])$, then we can multiply both sides by $[a]^{-1}$ to get $[x]=[y]$. That shows ϕ is 1-1. Similarly, if $[y] \in \mathbf{Z}_{24}$ is any class, the equation $\phi([x])=[a][x]=[y]$ has the solution $[x]=[a]^{-1}[y]$. Hence ϕ is onto. Finally we compute:

$$
\phi([x]+[y])=\phi([x+y])=[a(x+y)]=[a x+a y]=[a x]+[a y]=\phi([x])+\phi([y]) .
$$

Hence ϕ is a group homomorphism.
IV. (10) Let G be a group, let H be a subgroup of G, and let $a \in G$ be a fixed element. Let $a H=\{a h \mid h \in H\}$. Show that $a H$ is a subgroup of G if and only if $a \in H$.

Solution: If $a H$ is a subgroup of G, then we must have $a h=e$ for some $h \in H$, but then $a=h^{-1} \in H$ too since H is a subgroup of G and closed under taking inverses. Conversely, if $a \in H$, then $a H \subseteq H$ since H is closed under products. Moreover, if $k \in H$ is arbitrary, then $k=a h \in a H$ for $h=a^{-1} k$. Therefore $H \subseteq a H$. This shows that if $a \in H$, then $a H=H$ so $a H$ is a subgroup of G.

Extra Credit (10) A group G is generated by elements x, y satisfying the relations $x^{n}=e$, $y^{2}=e$, and $y x=x^{n-1} y$. Show that all of the elements $x^{\ell} y$ for $\ell=0,1, \ldots, n-1$ have order 2 .

Solution: We must show that $\left(x^{\ell} y\right)\left(x^{\ell} y\right)=e$. We can argue by induction that this is true for all $\ell \geq 0$ as follows. First, if $\ell=0$, it is given that $y^{2}=e$, so the statement is true in that case. Then suppose we know that $\left(x^{k} y\right)\left(x^{k} y\right)=e$ and consider

$$
\begin{aligned}
\left(x^{k+1} y\right)\left(x^{k+1} y\right) & =x^{k+1}(y x)\left(x^{k} y\right) \text { by associativity } \\
& =x^{k+1}\left(x^{n-1} y\right)\left(x^{k} y\right) \text { by the given relations } \\
& =\left(x^{k+1} x^{n-1} y\right)\left(x^{k} y\right) \text { by associativity } \\
& =\left(x^{k} x^{n} y\right)\left(x^{k} y\right) \text { by rules for exponents } \\
& =\left(x^{k} y\right)\left(x^{k} y\right) \text { by the given relations } \\
& =e \text { by the induction hypothesis }
\end{aligned}
$$

It follows that $x^{\ell} y$ has order 2 for all $\ell \geq 0$. Since $x^{n}=e$, we start repeating the same elements when $\ell=n$, though.

