
Mathematics 243, section 3 – Algebraic Structures
Exam 2, November 2, 2012

I. Think of R
2 (the set of ordered pairs of real numbers) as the ordinary Cartesian coor-

dinate plane. Let R be the relation on R
2 defined by

(x1, y1)R(x2, y2) ⇔ x2
1 + y2

1 = x2
2 + y2

2

A) (15) Show that R is an equivalence relation on R
2.

Solution: R is reflexive since for any (x, y), x2+y2 = x2+y2, so (x, y)R(x, y) is true. R
is symmetric since if (x1, y1)R(x2, y2) is true, then x2

1+y2
1 = x2

2+y2
2 . But then x2

2+y2
2 =

x2
1 + y2

1 , so (x2, y2)R(x1, y1) also. Finally, R is transitive since if (x1, y1)R(x2, y2)
and (x2, y2)R(x3, y3), then x2

1 + y2
1 = x2

2 + y2
2 and x2

2 + y2
2 = x2

3 + y2
3 . Therefore,

x2
1 + y2

1 = x2
3 + y2

3 , so (x1, y1)R(x3, y3). (Comment: for relations defined in this
fashion, the three properties of an equivalence relation follow from the corresponding
properties of the equality relation(!))

B) (5) Draw a picture of the equivalence class [(3, 4)] for this relation.

Solution: We have 32 + 42 = 25, so the equivalence class [(3, 4)] is the set of all (x, y)
satisfying x2 + y2 = 25. This is the circle of radius 5 centered at (0, 0) in R

2.

II. (20) Prove by mathematical induction: For all n ≥ 1,

1

1 · 2 · 3
+

1

2 · 3 · 4
+ · · · +

1

n(n + 1)(n + 2)
=

n(n + 3)

4(n + 1)(n + 2)
.

Solution: The base case is n = 1 and the formula is true in that case since

1

1 · 2 · 3
=

1

6
=

(1)(4)

(4)(2)(3)
.

For the induction step, assume

1

1 · 2 · 3
+

1

2 · 3 · 4
+ · · · +

1

k(k + 1)(k + 2)
=

k(k + 3)

4(k + 1)(k + 2)

and consider the corresponding sum for n = k + 1:

1

1 · 2 · 3
+

1

2 · 3 · 4
+ · · ·+

1

k(k + 1)(k + 2)
+

1

(k + 1)(k + 2)(k + 3)
.
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By the induction hypothesis, this equals

k(k + 3)

4(k + 1)(k + 2)
+

1

(k + 1)(k + 2)(k + 3)
.

We find a common denominator, add, and factor the numerator to simplify:

=
k(k + 3)(k + 3)

4(k + 1)(k + 2)(k + 3)
+

4

4(k + 1)(k + 2)(k + 3)

=
k(k + 3)(k + 3) + 4

4(k + 1)(k + 2)(k + 3)

=
k3 + 6k2 + 9k + 4

4(k + 1)(k + 2)(k + 3)

=
(k + 1)(k + 1)(k + 4)

4(k + 1)(k + 2)(k + 3)

=
(k + 1)(k + 4)

4(k + 2)(k + 3)

=
(k + 1)((k + 1) + 3)

4((k + 1) + 1)((k + 1) + 2))
,

which is what we wanted to show.

III.
A) (15) Give the precise statement of the division algorithm in Z, and prove the existence

part.

Solution: The statement is that for all integers a and b > 0, there exist unique integers
q, r such that

(1) a = qb + r and 0 ≤ r < b.

We must show that q, r as in (1) exist. So consider the set of integers

S = {a − qb : q ∈ Z}

If 0 ∈ S, then a = qb + 0 for some q and both parts of (1) are satisfied. So this case
is done, and for the rest of the proof we will assume 0 /∈ S.

No matter what the sign of a is, we will always have positive elements in S by taking q
negative with sufficiently large absolute value. Hence S ∩Z

+ 6= ∅. The Well-Ordering
Principle implies that S ∩ Z

+ has a smallest element. Call this smallest positive
element r. Then we have r = a − qb for some q ∈ Z and the first statement in (1) is
true since a = qb + r. The remainder of the proof (cue the laugh-track!) is to show
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that 0 < r < b. (Note that we have ruled out the case r = 0 above.) If r ≥ b, then we
claim that a contradiction results. This is because

r ≥ b ⇒ a − qb = r ≥ b

⇒ a − (q + 1)b = r − b ≥ 0

The integer a − (q + 1)b is also in the set S by definition. Hence either 0 ∈ S which
is ruled out above, or else r − b > 0 is in S. But r − b < r since b > 0. This is
a contradiction to the way we found r (it was supposed to be the smallest positive
element in S). Hence if r 6= 0, then 0 < r < b.

B) (15) Use the Euclidean algorithm to find the integer d = gcd(456, 120) and express d
in the form d = m · 456 + n · 120 for some integers m, n.

Solution: We have
456 = 3 · 120 + 96

120 = 1 · 96 + 24

96 = 4 × 24 + 0.

Hence gcd(456, 120) = 24 (the last nonzero remainder). Applying the extended Eu-
clidean Algorithm table (or otherwise), we find

1 0
0 1

3 1 −3
1 −1 4

Therefore 24 = (−1)(456) + (4)(120) is the equation we want.
C) (15) Find all solutions x ∈ Z of the congruence 17x ≡ 5 mod 32.

Solution: Since gcd(17, 32) = 1, we can proceed by finding a multiplicative inverse of
17 mod 32:

32 = 1 · 17 + 15

17 = 1 · 15 + 2

15 = 7 · 2 + 1

So
1 0
0 1

1 1 −1
1 −1 2
7 8 −15

Therefore (8)(32) + (−15)(17) = 1, which says the multiplicative inverse of 17 is
−15 ≡ 17 mod 32. (Note: We can compute 172 = 289 = 9 · 32 + 1, so this is correct.)
Then the congruence can be rewritten as

x ≡ 17 · 5 ≡ 21 mod 32
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and the solutions in Z are all the integers of the form x = 21 + 32ℓ for ℓ ∈ Z.

IV. (15) Let a, b, c be integers. Show that if gcd(a, b) = 1 and a|(bc), then a|c.

Solution 1: If gcd(a, b) = 1, then there exist m, n ∈ Z such that ma + nb = 1. Mul-
tiply both sides of this equation by c to get (mc)a + n(bc) = c. Since we assume
a|(bc), we know bc = qa for some integer q, and therefore by substitution and rear-
rangement using commutativity, associativity, and distributivity of multiplication in
Z, c = (mc)a + (nq)a = (mc + nq)a This shows a|c.

Solution 2: It is also possible to prove this by reasoning along the lines of Euclid’s
Lemma. However, since we are not assuming that a itself is prime, this must be done
carefully and no one who tried to do it this way quite saw how to push it through
correctly. What is true is that if p is any prime number dividing a, then p|(bc), and
Euclid’s Lemma shows p|b or p|c. However we also assumed that gcd(a, b) = 1, so if
p|a, then p 6 |b and as a result p|c. This says a = pa′ and c = pc′ for some integers a′, c′.
From the equation bc = qa for some q, we get bc′p = qa′p, so bc′ = qa′ by cancellation.
It is true that gcd(a′, b) = 1 and a′|(bc′). Hence we can repeat the argument with a′

and c′. After a finite number of such steps we will have cancelled all the prime factors
of a and shown that a|c.

Extra Credit (10) Give a proof that every positive integer n > 1 is a product of prime
numbers using complete induction. (Note: a “product” here may consist of a single factor.)

Solution: The base case is n = 2. Since 2 is a prime the statement is true (allowing
products with one factor). Now assume the statement is true for all ℓ < n and consider
n. If n itself is prime, then we are done as in the base case. Otherwise, n = ℓ1ℓ2 with
1 < ℓ1, ℓ2 < n. By the induction hypothesis we can write both ℓ1 and ℓ2 as products of
primes, and then the same is true for n.
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