I. Let A, B, C be any subsets of a universal set U.
A) Show that if $A \subseteq B$, then $A \cap C \subseteq B \cap C$.

Solution: Let $x \in A \cap C$. Then $x \in A$ and $x \in C$. It follows from $A \subseteq B$ and $x \in A$ that $x \in B$ as well. Hence $x \in B$ and $x \in C$, so $x \in B \cap C$. This shows $A \cap C \subseteq B \cap C$.
B) Is it true that $A-B=A-C$ implies $B=C$? If you think the statement is true, illustrate with a Venn diagram. If you think the statement is false, give a counterexample.
Solution: This statement is false because $A-B=A \cap B^{\prime}$ and $A-C=A \cap C^{\prime}$. To make a counterexample, we just need to think of sets B and C whose complements intersect A in the same set, but which have different elements. Here's a simple example. In $U=\{1,2,3\}$, let $A=\{1\}, B=\{2,3\}$ and $C=\{2\}$. Then $B^{\prime}=\{1\}=A \cap B^{\prime}$ and $C^{\prime}=\{1,3\}$, so $A \cap C^{\prime}=\{1\}$. But clearly $B \neq C$.
II. Consider the following statement, where A is a nonempty set. "If $f: A \rightarrow B$ is an onto mapping, then for all $b \in B$, the set $f^{-1}(\{b\})$ is nonempty." Give the contrapositive form of this statement. Are the given statement and its contrapositive true or false? Explain.

Solution: The contrapositive form is: "If for some $b \in B$ the set $f^{-1}(\{b\})$ is empty, then f is not an onto mapping." This statement and the original form are equivalent and both true. By definition, f is onto if for all $b \in B$, there exist $a \in A$ such that $f(a)=b$. Those a are precisely the elements of $f^{-1}(\{a\})$, so that set must be nonempty. That is the given form of the statement.
III. Let $f, g: \mathbf{Z} \rightarrow \mathbf{Z}$ be the mappings given by

$$
f(x)=\left\{\begin{array}{lll}
2 x-1 & \text { if } x \text { is even } \\
x+1 & \text { if } x \text { is odd }
\end{array} \quad g(x)= \begin{cases}x & \text { if } x \text { is even } \\
x+1 & \text { if } x \text { is odd }\end{cases}\right.
$$

A) Let $S=\{1,2,3\}$ and $T=\{0,3,6\}$. What is $g^{-1}(T) \cap f(S)$?

Solution: We have $f(S)=\{f(1), f(2), f(3)\}=\{2,3,4\}$. Then $g^{-1}(T)=\{x \in \mathbf{Z} \mid$ $g(x) \in T\}=\{0,-1,6,5\}$. (Note that $g(x)$ is even for all x, so there are no x that map to $3 \in T$.) So $g^{-1}(T) \cap f(S)=\emptyset$.
B) What is the mapping $f \circ g$?

Solution: By the observation about g, given in the previous part, in computing ($f \circ$ $g)(x)$, we never use the part of the definition of f for odd x, and:

$$
(f \circ g)(x)= \begin{cases}2 x-1 & \text { if } x \text { is even } \\ 2(x+1)-1=2 x+1 & \text { if } x \text { is odd }\end{cases}
$$

IV. Consider the binary operation on \mathbf{Z} defined by $x * y=x+x y+y$.
A) Is $*$ associative?

Solution: Let x, y, z be any three integers. We have

$$
\begin{aligned}
(x * y) * z & =(x+x y+y) * z \\
& =x+x y+y+(x+x y+y) z+z \\
& =x+y+z+x y+x z+y z+x y z
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
x *(y * z) & =x *(y+y z+z) \\
& =x+x(y+y z+z)+y+y z+z \\
& =x+y+z+x y+x z+y z+x y z
\end{aligned}
$$

These are always the same, so $*$ is associative.
B) There is an identity element for $*$. Find it and justify your claim.

Solution: By inspection $e=0$ acts as an identity for $*$.
V. (15) Let $A \in M_{2 \times 2}(\mathbf{Z})$ be the matrix $A=\left(a_{i j}\right)$ defined by $a_{i j}=i-j$, and let $B \in M_{3 \times 2}(\mathbf{Z})$ be the matrix $B=\left(b_{i j}\right)$ defined by $b_{i j}=i+2 j$. Which of the two products $A B, B A$ are defined? Compute the one(s) that are defined.

Solution: By the given information,

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
3 & 5 \\
4 & 6 \\
5 & 7
\end{array}\right)
$$

The sizes match to multiply only for $B A$ and

$$
B A=\left(\begin{array}{ll}
5 & -3 \\
6 & -4 \\
7 & -5
\end{array}\right)
$$

Extra Credit Which $x \in \mathbf{Z}$ have inverses for the binary operation $*$ from question IV?
Solution: x has an inverse y when $x+x y+y=0$ (using the identity from part B) of IV. This says $y=\frac{-x}{x+1}$. But this formula gives integer values only when $x=0$ and $x=-2$. The inverse of 0 is 0 and the inverse of -2 is -2 .

