I. An RSA public-key cryptographic system has $m=143$ and the encryption exponent $e=17$.
A) What is the corresponding decryption exponent $d$ ?

Solution: Since $m=143=11 \cdot 13$, the primes are $p=11$ and $q=13$, and $(p-1)(q-$ $1)=120$. Since $e=17$ satisfies $\operatorname{gcd}(17,120)=1$, $[17]$ has a multiplicative inverse $[d]=[17]^{-1}$ in $\mathbf{Z}_{120}$ and that gives the decryption exponent. We can compute the multiplicative inverse using the Euclidean Algorithm technique, but in fact this works out very simply here:

$$
120=7 \cdot 17+1
$$

So $[17]^{-1}=[-7]=[113]$. Thus $d=113$. (Note: We could also use $d=-7$, but that is not usually done with RSA decryption, since it requires computations of inverses at every step.)
B) If you use a 26 -letter alphabet, represented by the numbers $0,1, \ldots, 25$, and 3 -digit blocks to represent the encrypted symbols, what would be the encrypted form of the plaintext: HC?
Solution: We have $H \leftrightarrow 7$ and $C \leftrightarrow 2$ (since we're starting from 0 ). The $H$ encrypts to $7^{17} \equiv 50 \bmod 143$ and the $C$ encrypts to $2^{17} \equiv 84 \bmod 143$. If we use three-digit blocks to represent each letter, we get 050, 084 as the encrypted form. Practical Note: The best way to compute powers like this is via repeated squaring, since that keeps the sizes of the integers encountered small. We have, for instance

$$
\begin{aligned}
7^{2} & \equiv 49 \bmod 143 \\
7^{4} & \equiv 49^{2} \equiv 113 \bmod 143 \\
7^{8} & \equiv 113^{3} \equiv 42 \bmod 143 \\
7^{16} & \equiv 42^{2} \equiv 48 \bmod 143 \\
\text { So, } 7^{17} & =7^{16} \cdot 7 \equiv 48 \cdot 7=336 \equiv 50 \bmod 143
\end{aligned}
$$

II. Let $\mathbf{Q}$ be the set of rational numbers: $\mathbf{Q}=\{m / n: m, n \in \mathbf{Z}, n \neq 0\}$. Define a binary operation $*$ on $\mathbf{Q}-\{-1\}$ by $x * y=x+y+x \cdot y$ (where $\cdot$ is ordinary multiplication). Is $G=\mathbf{Q}-\{-1\}$ a group under $*$ ? Why or why not?

Solution: The answer is: Yes. Note that

$$
x * y=(1+x) \cdot(1+y)-1
$$

(where the $\cdot$ is ordinary multiplication). If $x, y$ are rational numbers, then $x * y$ is definitely a rational number since $\mathbf{Q}$ is closed under sums and products. The displayed formula above also says that if $x \neq-1$ and $y \neq-1$, then $x * y \neq-1$. (Equivalently, if $x * y=-1$, then
$(1+x)(1+y)=0$, so $x=-1$ or $y=-1$, which is the contrapositive form of the first statement.) Hence $G$ is closed under *. Next, we have

$$
(x * y) * z=(x+y+x \cdot y) * z=x+y+z+x \cdot y+x \cdot z+y \cdot z+x \cdot y \cdot z=x *(y * z)
$$

so the operation $*$ is associative. The element $0 \in G$ acts as an identity for $*$ since $x * 0=x=0 * x$ for all $x \in G$. Finally, if $x \in G$, then $x * y=x+y+x \cdot y=0$ if and only if $y=\frac{-x}{1+x}$. This makes sense in $\mathbf{Q}$ as long as $x \neq-1$, and $y \neq-1$ since $\frac{-x}{1+x}=-1$ has no rational solutions. Therefore every element in $G$ has an inverse in $G$.
III.
A) Find all generators of the group $G=\mathbf{Z}_{21}$, in which the operation is addition mod 21 . Solution: The generators are the $[a]$ such that $\operatorname{gcd}(a, 21)=1$, which are:

$$
[1],[2],[4],[5],[8],[10],[11],[13],[16],[17],[18],[20]
$$

B) What are the possible orders of elements of the group $G$ from part A?

Solution: By the "big theorem" on cyclic groups, the order of the element $[a]$ is $o([a])=21 / \operatorname{gcd}(a, 21)$. There are exactly four possible orders: $o([a])=1$ if $a=0$, $o([a])=3$ if $a=7,14, o([a])=7$ if $a=3,6,9,12,15,18$ and $o([a])=21$ for the $a$ in part A of this question. We also have

$$
\langle[3]\rangle=\langle[6]\rangle=\cdots=\langle[18]\rangle
$$

and

$$
\langle[7]\rangle=\langle[14]\rangle
$$

IV. Let $G=\langle a\rangle$ be a cyclic group.
A) Show that every subgroup $H \subset G$ is cyclic.
B) Show that if $G$ is finite, with $|G|=n$, then $\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle$ where $d=\operatorname{gcd}(n, k)$. See the class notes for these.
V. Let $G=\mathbf{Z}_{12}$ and $H=\mathbf{Z}_{9}$, which are both groups under addition. We write $[x]_{12}$ for the congruence class of $x \bmod 12$, and similarly $[x]_{9}$ for the class mod 9 . Define $\phi: G \rightarrow H$ by $\phi\left([x]_{12}\right)=[3 x]_{9}$.
A) Show that $[x]_{12}=[y]_{12}$ implies $[3 x]_{9}=[3 y]_{9}$ (so that this mapping actually makes sense).
Solution: If $[x]_{12}=[y]_{12}$, then $12 \mid(x-y)$, or $x-y=12 k$ for some integer $k$. But then $3 x-3 y=3(x-y)=36 k=(4 k) \cdot 9$, so $9 \mid(3 x-3 y)$. This shows $[3 x]_{9}=[3 y]_{9}$.
B) Show that $\phi$ is a group homomorphism.

Solution: We have by the definitions of the additions in $\mathbf{Z}_{12}$ and $\mathbf{Z}_{9}$, plus the definition of $\phi$ :

$$
\begin{aligned}
\phi\left([x]_{12}+[y]_{12}\right) & =\phi\left([x+y]_{12}\right) \\
& =[3(x+y)]_{9} \\
& =[3 x+3 y]_{9} \\
& =[3 x]_{9}+[3 y]_{9} \\
& =\phi\left([x]_{12}\right)+\phi\left([y]_{12}\right)
\end{aligned}
$$

Since this is true for all $x, y$, the mapping $\phi$ is a homomorphism of groups.
C) Find all the elements of $\operatorname{ker}(\phi)$.

Solution: $\operatorname{ker}(\phi)=\left\{[x]_{12} \in \mathbf{Z}_{12} \mid[3 x]_{9}=[0]_{9}\right\}$. This is the set $\{[0],[3],[6],[9]\}$ (the subgroup $\langle[3]\rangle$ in $\mathbf{Z}_{12}$ ).
VI. Let $G$ be a group and let $a \in G$ be a fixed element. Define

$$
C(a)=\{x \in G: a x=x a\}
$$

A) Is $b=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ in $C(a)$ for $a=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ in $G=G L(2, \mathbf{R})$ (a group under matrix multiplication)? Why or why not?
Solution: We check:

$$
a b=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
4 & 6 \\
3 & 4
\end{array}\right)
$$

But

$$
b a=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 3 \\
3 & 7
\end{array}\right)
$$

Since these are different, the answer is no.
B) Show that $C(a)$ is a subgroup of $G$.

Solution: We use the "shortcut method" from Theorem 3.10 in the text. $C(a)$ is not empty since the identity $e$ in $G$ satisfies $a e=e a=a$. So $e \in C(a)$. Next, if $x, y \in C(a)$, then we have $a x=x a$ and $a y=y a$. The second equation also implies $a y^{-1}=y^{-1} a$ (multiply on both sides of the equation by $y^{-1}$ on left and right). Then

$$
\begin{aligned}
a\left(x y^{-1}\right) & =(a x) y^{-1} \text { by associativity } \\
& =(x a) y^{-1} \text { since } x \in C(a) \\
& =x\left(a y^{-1}\right) \text { by associativity } \\
& =x\left(y^{-1} a\right) \text { by the above observation } \\
& =\left(x y^{-1}\right) a \text { by associativity }
\end{aligned}
$$

This shows that $x y^{-1} \in C(a)$, so $C(a)$ is a subgroup of $G$.

