
Mathematics 243, section 3 – Algebraic Structures
Solutions for Exam 3 Review Questions

November 29, 2012

I. An RSA public-key cryptographic system has m = 143 and the encryption exponent
e = 17.
A) What is the corresponding decryption exponent d?

Solution: Since m = 143 = 11 · 13, the primes are p = 11 and q = 13, and (p − 1)(q −
1) = 120. Since e = 17 satisfies gcd(17, 120) = 1, [17] has a multiplicative inverse
[d] = [17]−1 in Z120 and that gives the decryption exponent. We can compute the
multiplicative inverse using the Euclidean Algorithm technique, but in fact this works
out very simply here:

120 = 7 · 17 + 1

So [17]−1 = [−7] = [113]. Thus d = 113. (Note: We could also use d = −7, but that
is not usually done with RSA decryption, since it requires computations of inverses
at every step.)

B) If you use a 26-letter alphabet, represented by the numbers 0, 1, . . . , 25, and 3-digit
blocks to represent the encrypted symbols, what would be the encrypted form of the
plaintext: HC?
Solution: We have H ↔ 7 and C ↔ 2 (since we’re starting from 0). The H encrypts
to 717 ≡ 50 mod 143 and the C encrypts to 217 ≡ 84 mod 143. If we use three-digit
blocks to represent each letter, we get 050, 084 as the encrypted form. Practical Note:
The best way to compute powers like this is via repeated squaring, since that keeps
the sizes of the integers encountered small. We have, for instance

72 ≡ 49 mod 143

74 ≡ 492 ≡ 113 mod 143

78 ≡ 1133 ≡ 42 mod 143

716 ≡ 422 ≡ 48 mod 143

So, 717 = 716 · 7 ≡ 48 · 7 = 336 ≡ 50 mod 143.

II. Let Q be the set of rational numbers: Q = {m/n : m, n ∈ Z, n 6= 0}. Define a binary
operation ∗ on Q − {−1} by x ∗ y = x + y + x · y (where · is ordinary multiplication). Is
G = Q− {−1} a group under ∗? Why or why not?

Solution: The answer is: Yes. Note that

x ∗ y = (1 + x) · (1 + y) − 1

(where the · is ordinary multiplication). If x, y are rational numbers, then x∗y is definitely
a rational number since Q is closed under sums and products. The displayed formula above
also says that if x 6= −1 and y 6= −1, then x ∗ y 6= −1. (Equivalently, if x ∗ y = −1, then
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(1 + x)(1 + y) = 0, so x = −1 or y = −1, which is the contrapositive form of the first
statement.) Hence G is closed under ∗. Next, we have

(x ∗ y) ∗ z = (x + y + x · y) ∗ z = x + y + z + x · y + x · z + y · z + x · y · z = x ∗ (y ∗ z)

so the operation ∗ is associative. The element 0 ∈ G acts as an identity for ∗ since
x ∗ 0 = x = 0 ∗ x for all x ∈ G. Finally, if x ∈ G, then x ∗ y = x + y + x · y = 0 if and only
if y = −x

1+x
. This makes sense in Q as long as x 6= −1, and y 6= −1 since −x

1+x
= −1 has no

rational solutions. Therefore every element in G has an inverse in G.

III.
A) Find all generators of the group G = Z21, in which the operation is addition mod 21.

Solution: The generators are the [a] such that gcd(a, 21) = 1, which are:

[1], [2], [4], [5], [8], [10], [11], [13], [16], [17], [18], [20]

B) What are the possible orders of elements of the group G from part A?
Solution: By the “big theorem” on cyclic groups, the order of the element [a] is
o([a]) = 21/ gcd(a, 21). There are exactly four possible orders: o([a]) = 1 if a = 0,
o([a]) = 3 if a = 7, 14, o([a]) = 7 if a = 3, 6, 9, 12, 15, 18 and o([a]) = 21 for the a in
part A of this question. We also have

〈[3]〉 = 〈[6]〉 = · · · = 〈[18]〉

and
〈[7]〉 = 〈[14]〉.

IV. Let G = 〈a〉 be a cyclic group.
A) Show that every subgroup H ⊂ G is cyclic.
B) Show that if G is finite, with |G| = n, then 〈ak〉 = 〈ad〉 where d = gcd(n, k).

See the class notes for these.

V. Let G = Z12 and H = Z9, which are both groups under addition. We write [x]12 for
the congruence class of x mod 12, and similarly [x]9 for the class mod 9. Define φ : G → H
by φ([x]12) = [3x]9.
A) Show that [x]12 = [y]12 implies [3x]9 = [3y]9 (so that this mapping actually makes

sense).
Solution: If [x]12 = [y]12, then 12|(x− y), or x− y = 12k for some integer k. But then
3x − 3y = 3(x − y) = 36k = (4k) · 9, so 9|(3x − 3y). This shows [3x]9 = [3y]9.

B) Show that φ is a group homomorphism.
Solution: We have by the definitions of the additions in Z12 and Z9, plus the definition
of φ:

φ([x]12 + [y]12) = φ([x + y]12)

= [3(x + y)]9

= [3x + 3y]9

= [3x]9 + [3y]9

= φ([x]12) + φ([y]12)
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Since this is true for all x, y, the mapping φ is a homomorphism of groups.
C) Find all the elements of ker(φ).

Solution: ker(φ) = {[x]12 ∈ Z12 | [3x]9 = [0]9}. This is the set {[0], [3], [6], [9]} (the
subgroup 〈[3]〉 in Z12).

VI. Let G be a group and let a ∈ G be a fixed element. Define

C(a) = {x ∈ G : ax = xa}

A) Is b =

(

1 2
3 4

)

in C(a) for a =

(

1 1
0 1

)

in G = GL(2,R) (a group under matrix

multiplication)? Why or why not?
Solution: We check:

ab =

(

1 1
0 1

) (

1 2
3 4

)

=

(

4 6
3 4

)

But

ba =

(

1 2
3 4

) (

1 1
0 1

)

=

(

1 3
3 7

)

Since these are different, the answer is no.
B) Show that C(a) is a subgroup of G.

Solution: We use the “shortcut method” from Theorem 3.10 in the text. C(a) is
not empty since the identity e in G satisfies ae = ea = a. So e ∈ C(a). Next, if
x, y ∈ C(a), then we have ax = xa and ay = ya. The second equation also implies
ay−1 = y−1a (multiply on both sides of the equation by y−1 on left and right). Then

a(xy−1) = (ax)y−1 by associativity

= (xa)y−1 since x ∈ C(a)

= x(ay−1) by associativity

= x(y−1a) by the above observation

= (xy−1)a by associativity

This shows that xy−1 ∈ C(a), so C(a) is a subgroup of G.
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