Mathematics 243, section 1 — Algebraic Structures
Solutions for Exam 2, November 1, 2006

I. Think of R? (the set of ordered pairs of real numbers) as the ordinary Cartesian coor-
dinate plane. Let R be the relation on R? defined by

A)

(21, Y1) R(22, y2) < 3z1 + y1 = 322 + ¥2
(15) Show that R is an equivalence relation on R2.

Solution: R is reflerive because for all points (z,y) € R?, 3z +y = 3z + y, hence
(z,y)R(z,y).

R is symmetric because if (1, y1)R(z2,y2), then 3z1 + y1 = 325 + ya, 50 322 + Y3 =
3z1 + y1, and (21, y1)R(z2, y2)-

R is transitive because if (z1,y1)R(x2,y2) and (z2,y2)R(x3,ys), then 3z, + y; =
3.’172 + Y2 and 3372 +y2 = 3373 + Y3, SO 3.731 +y1 = 3.733 + y3.

(5) Draw a picture of the equivalence class [(2, 3)] for this relation.

Solution: The equivalence class of the point (2,3) is the set of all points (z,y) such
that (z,y)R(2,3), so 3z +y = 9. This is the line y = —3z + 9 with slope —3 and
y-axis intercept at (0,9).

II. (20) Prove by mathematical induction: For all n > 1,

(1)

PB433 453+ 4+ (2n—1)2 =n?(2n% - 1).

Solution: The base case is n = 1. For n = 1, the left side of the formula (1) is 1® = 1,
and the right side is 12(2-1 — 1) so the formula is true for n = 1.

For the induction step assume that (1) is true for n = k. Then with n = k+ 1, by the
induction hypothesis and the binomial theorem we have
PB433 4534 2k =13+ 2+ 1) =13 =k22k - 1)+ 2k +1) = 1)3
=2k* — k? + (2k +1)3
=2k* — k* + 8k® + 12k* + 6k + 1
= 2k* 4+ 8k® + 11k* + 6k + 1

On the other hand, we are trying to show that this is the same as the right side of (1)
with n = k + 1, namely,

(k+1)2(2(k+1)> = 1) = (k* + 2k + 1)(2k® + 4k + 1)
= 2k* + 8k® + 11k* + 6k + 1
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III.

Since the two sides of (1) agree for n = k + 1, the formula is true for all n > 1 by the
Principle of Mathematical Induction.

A) (15) Give the precise statement of the division algorithm in Z, and prove the existence

C)

part.

Solution: The statement is that for all integers a and b > 0, there exist unique integers
q,r such that

(2) a=qb+r and 0<r<hb.
We must show that ¢, as in (2) exist. So consider the set of integers
S={a—qb:qeZ}

If 0 € S, then a = ¢gb + 0 for some ¢ and both parts of (2) are satisfied. So this case
is done, and for the rest of the proof we will assume 0 # S.

If a is positive then S contains positive elements such as a — 0g = a. If a is negative,
we will still have positive elements in S by taking ¢ negative with sufficiently large
absolute value. Hence SNN # (). The Well-Ordering Principle implies that SNN has
a smallest element. Call this smallest positive element . Then we have r = a — gb
for some q € Z and the first statement in (2) is true since a = gb + r. The remainder
of the proof (cue laugh-track!) is to show that 0 < r < b. (Note that we have ruled
out the case r = 0 above.) If r > b, then we claim that a contradiction results. This
is because

r>b=a—qgb=r>0»5

=a—(¢g+1)b=r—>5>0
The integer a — (¢ + 1)b is also in the set S by definition. Hence either 0 € S which
is ruled out above, or else r —b > 0 is in S. But »r — b < r since b > 0. This is
a contradiction to the way we found r (it was supposed to be the smallest positive

element in S). Hence if r # 0, then 0 < r < b (which is another way of saying
0<r<b).

(5) Let a,b,c, q,r be integers. Show that if c|a, c|b, and a = gb+ 7, then c|r.

Solution: Since cla and c|b, there exist integers m,n such that a = mc and b = nec.
Then
mc=qnc+r =r=c(m—qn)

which shows that c|r.

(15) Use the Euclidean algorithm to find the integer d = ged(576,99) and express d
in the form d = m - 576 + n - 99 for some integers m, n.
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IV.
A)

B)

Solution: We first carry out the divisions:

976 =5-99 + 81

9=1-81+18
81=4-1849
18=2-94+0

The last non-zero remainder is 9 = ged(576,99). (Note that 5+74+6 =18 =949 so
we could tell both numbers are divisible by 9 by the “sum of digits” test.) Then

kg mr ng

-1 1 0
0 0 1
1 5 1 -3
2 1 -1 6
3 4 5 =29

which shows that
5-576 4+ (—29) - 99 = 9 = ged (576, 99).

(10) Find a solution z of the congruence 31z = 2 mod 64 with 0 < z < 63.

Solution: Since ged(31,64) = 1, there will be a unique solution and we want a multi-
plicative inverse of 31 mod 64 to find it.

64=2-31+2

31=15-2+1
Hence

ko agx mp  ng

—1 1 0

0 0 1

1 2 1 =2
2 15 —-15 31

So [31] = [31] 7! in Zgy, since (—15) - 64 + 31-31 = 1. We obtain z = 2 - 31 mod 64 so
x = 62 is one solution. (The others are the integers x = 62 + 644 for all £ € Z.)

(10) For which [b] € Zq¢ do solutions [x] € Zig of the equation [12][z] = [b] exist?
Explain how you can tell.

Solution: By problem 35 from section 2.5, in order for az = b mod n to have a solution,
b must be divisible by ged(a,n). Here ged(12,16) = 4, so there are solutions when
b=0,4,8,12. (For instance, with b = 0 we can take z = 0; with b = 4 we can take
xz = 3; with b = 8 we can take x = 2; with b = 12 we can take x = 1. There are
other solutions too in each case, which can be found by the process in problem 36
from section 2.5.)



