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1.4/9 Let a € A, and assume b, c are both inverses of a for *. Consider the “product”
(b x a) * c. First, since b is an inverse for a, (b * a) x ¢ = e x ¢ = ¢ (where the last
equality comes since e is the identity element for x). But we also know # is associative, so
(bxa)xc=bx*(a*xc) =bxe=>b. Hence b = ¢, so the inverse of a is unique (if it exists).

1.4/13 The problem says show that f : A — A has a left inverse (for composition) if and
only if f~1(f(S)) = S for all subsets S C A. From Discussion 2, or Lemma 1.23 in the
text, we know that f has a left inverse if and only if f is injective. Hence it suffices to
prove that f is injective if and only if f~1(f(S)) =S for all S C A.

=: We show that f injective implies f~!(f(S)) = S for all S. The inclusion S C f~1(f(S))
is automatic from the definitions of the direct and inverse images (if you don’t see why, work
this out from the definitions(!)). So the key point is the other inclusion. Let x € f~1(f(9)).
By definition, this means f(z) € f(S), so f(z) = f(a) for some a € S. But we are assuming
[ is injective, so = a € S. Hence z € S and f~1(f(S)) C S, which finishes this part of
the proof.

<: Now we assume that f~1(f(S)) = S for all S, and use that to show f is injective. Let
z € A, and consider the subset S = {z}. By hypothesis in this part, f~}(f({z})) = {z}.
If f(a) = f(z) for some a € A, then by the definition of the direct image, f(a) € f(S5).
Then by the definition of the inverse image, a € f~'(f(S)). But then a € S = {z}, so the
only possibility is a = x. Hence f is injective. This concludes the proof.

1.4/13 The problem says show that f: A — A has a right inverse (for composition) if and
only if f(f~Y(T)) = T for all subsets T C A. From Discussion 2, or Lemma 1.24 in the
text, we know that f has a right inverse if and only if f is surjective. Hence it suffices to
prove that f is surjective if and only if f(f~'(T)) =T for all T C A.

=: We show that f surjective implies f(f~!(T)) = T for all T. The inclusion f(f~*(T)) C
T is automatic from the definitions of the direct and inverse images (if you don’t see why,
work this out from the definitions(!)). So the key point is the other inclusion. Let = € T.
Since f is surjective, there is some a € A such that f(a) = z. By definition a € f~(T),

sox = f(a) € f(f~Y(T)). Hence T C f(f~X(T)).

<: Now we assume that f(f~1(T)) = T for all subsets, and use that to show f is surjective.
As in problem 13 above, the “action” all goes on with one-element subsets(!) Let z € A
be arbitrary, and consider T = {z}. Since T = f(f~Y(T)), z = f(a) for some a € f~1(T).
But x was arbitrary in A, so this shows that all  in A are in the range of f. Hence f is
surjective. This concludes the proof.



1.6/19. Let {Ax}, A € £ be a collection of subsets of A defining a partition of A. That is

we are given:
A=y Ax and
ANA, =0 ifX#p

The problem is to show that if we define a relation R on A by

xRy & x,y € the same Ay
then R is an equivalence relation. (Note: by the second property of a partition, z and y
cannot be in more than one of the Ay.) To show that R is an equivalence relation, we

check that R is reflexive, symmetric, and transitive.

reflexive: xRz is true for all x since there is just one subset Ay such that z € Ay (the
different subsets in the partition do not overlap).

symmetric: If xRy is true, then z,y € Ay). But that says y,x € Ay also, so yRx follows.

transitive: If xRy and yRz, then z,y are in the same Ay, and y, z are in the same Aj.
Hence z, z are in the same Ay, so zRz follows.



