Mathematics 136, section 2 - Advanced Placement Calculus

Solutions for Exam 2 - November 4, 2009
I. Consider the function $f(x)=x^{3}+6 x^{2}-15 x$.
A) (10) Find all the critical numbers of f and classify each as a local maximum, local minimum, or neither.
Solution: We have $f^{\prime}(x)=3 x^{2}+12 x-15=3(x+5)(x-1)$. This is defined for all x and zero only at $x=-5,1$ so those are the critical numbers. We have $f^{\prime \prime}(x)=6 x+12$. Hence $f^{\prime \prime}(-5)=-18$ and $f^{\prime \prime}(1)=18$. By the Second Derivative Test, $x=-5$ is a local maximum, and $x=1$ is a local minimum. (Note: this can also be determined by the First Derivative Test, finding the intervals where f^{\prime} is positive ($x<-5$ and $x>1$) and the interval where f^{\prime} is negative $(-5<x<1)$.
B) (5) What are the absolute (global) maximum and minimum values of $f(x)$ on the interval $[0,3]$?
Solution: The critical number $x=1$ is in this interval. $f(0)=0, f(1)=-8$ and $f(3)=36$. So the absolute maximum is $f(3)=36$ and the absolute minimum is $f(1)=-8$.
II. (10) Evaluate the following limit:

$$
\lim _{\theta \rightarrow 0} \frac{\cos (5 \theta)-1}{\theta^{2}}
$$

Solution: This is indeterminate of the form $0 / 0$, so we can apply L'Hopital's Rule (twice):

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \frac{\cos (5 \theta)-1}{\theta^{2}} & =\lim _{\theta \rightarrow 0} \frac{-5 \sin (5 \theta)}{2 \theta} \quad(\text { still } 0 / 0) \\
& =\lim _{\theta \rightarrow 0} \frac{-25 \cos (5 \theta)}{2} \\
& =\frac{-25}{2}
\end{aligned}
$$

III. The velocity of a accelerating car is measured at each of the following times, yielding a table of values:

$$
\begin{array}{l|cccccc}
t=\text { time }(\mathrm{sec}) & 1 & 3 & 5 & 7 & 9 & 11 \\
\hline v(t)=\text { velocity }(\mathrm{ft} / \mathrm{sec}) & 1 & 3.5 & 5.1 & 7.8 & 9.0 & 11.2
\end{array}
$$

A) (5) Give an estimate for the total distance traveled by the car between $t=1$ and $t=11$ using a left-hand Riemann sum for the velocity function and $\Delta t=2$.
Solution: The left-hand Riemann sum estimate is

$$
v(1) \Delta t+v(3) \Delta t+v(5) \Delta t+v(7) \Delta t+v(9) \Delta t=2+7+10.2+15.6+18=52.8 \mathrm{ft} .
$$

B) (5) Is your result from A) less than or greater than the actual total distance traveled, assuming v is always increasing between $t=1$ and $t=11$? Explain.
Solution: If v is always increasing on this interval, then each term in the left-hand Riemann sum underestimates the actual distance traveled on that interval. Hence the answer in A is less than the actual distance traveled.
IV. Compute each of the following integrals. Show all work.
A) (5) $\int_{1}^{4} x^{2}-3 \sqrt{x}+4 d x$

Solution: By the Evaluation Theorem, this gives:

$$
\frac{x^{3}}{3}-2 x^{3 / 2}+\left.4 x\right|_{1} ^{4}=\frac{64}{3}-16+16-\frac{1}{3}+2-4=19 .
$$

B) (10) $\int \sec ^{2}(2 x) \sqrt[3]{\tan (2 x)+4} d x$

Solution: Let $u=\tan (2 x)+4$. Then $d u=2 \sec ^{2}(2 x) d x$, and the form is

$$
\frac{1}{2} \int u^{1 / 3} d u=\frac{1}{2} \cdot \frac{3}{4} u^{4 / 3}+C=\frac{3}{8}(\tan (2 x)+4)^{4 / 3}+C .
$$

Integrate using the indicated method and the table (say which entry you are using if you use one).
C) (10) Use parts: $\int x^{2} e^{4 x} d x$ (full credit only for showing all work; you can check your result by the table)
Solution: Integrate by parts twice making u the power of x both times:

$$
\begin{aligned}
\int x^{2} e^{4 x} d x & =\frac{x^{2} e^{4 x}}{4}-\frac{2}{4} \int x e^{4 x} d x \\
& =\frac{x^{2} e^{4 x}}{4}-\frac{1}{2}\left(\frac{x e^{4 x}}{4}-\frac{1}{4} \int e^{4 x} d x\right) \\
& =\frac{x^{2} e^{4 x}}{4}-\frac{x e^{4 x}}{8}+\frac{e^{4 x}}{32}+C
\end{aligned}
$$

D) (12.5) Use a trigonometric substitution: $\int \frac{\sqrt{25-x^{2}}}{x} d x$.

Solution: From the form of the integrand, let $x=5 \sin \theta$, so $d x=5 \cos \theta d \theta$. Then the integral can be evaluated by using the trigonometric identity $\cos ^{2} \theta=1-\sin ^{2} \theta$:

$$
\begin{aligned}
\int \frac{\sqrt{25-x^{2}}}{x} d x & =\int \frac{5 \cos \theta}{5 \sin \theta} 5 \cos \theta d \theta \\
& =5 \int \frac{\cos ^{2} \theta}{\sin \theta} d \theta \\
& =5 \int \frac{1-\sin ^{2} \theta}{\sin \theta} d \theta \\
& =5 \int \csc \theta-\sin \theta d \theta \\
& =5(\ln |\csc \theta-\cot \theta|+\cos \theta)+C \quad \# 15 \text { in table } \\
& =5 \ln \left|\frac{5}{x}-\frac{\sqrt{25-x^{2}}}{x}\right|+\sqrt{25-x^{2}}+C .
\end{aligned}
$$

E) (12.5) Use partial fractions:

$$
\int \frac{x+4}{(x+1)\left(x^{2}+16\right)} d x
$$

Solution: From the form of the denominator we set up the partial fractions:

$$
\begin{aligned}
\frac{2 x+19}{(x+1)\left(x^{2}+16\right)} & =\frac{A}{x+1}+\frac{B x+C}{x^{2}+16} \\
2 x+19 & =A\left(x^{2}+16\right)+(B x+C)(x+1)
\end{aligned}
$$

Equating coefficients gives $A+B=0, B+C=2$ and $16 A+C=19$. So $A=1, B=-1$, and $C=3$. Integrating with $\# 15$ in table, we obtain:

$$
\int \frac{d x}{x+1}+\int \frac{-x+3}{x^{2}+16} d x=\ln |x+1|-\frac{1}{2} \ln \left|x^{2}+16\right|+\frac{3}{4} \tan ^{-1}(x / 4)+C .
$$

V. A) (15) A fish swimming against a current of $u \mathrm{ft} / \mathrm{sec}$ (constant) for a distance L (constant) will expend energy

$$
E(v)=\frac{L v^{3}}{v-u}
$$

if it swims at $v \mathrm{ft} / \sec (u<v)$. What v minimizes the total energy expended?
Solution: By the quotient rule,

$$
E^{\prime}(v)=\frac{(v-u) \cdot 3 L v^{2}-L v^{3} \cdot(1)}{(v-u)^{2}}
$$

and $E^{\prime}(v)=0$ when the numerator is zero, so $3 L(v-u) v^{2}=L v^{3}$. Dividing through by $L v^{2}, 3(v-u)=v$, so $v=\frac{3 u}{2}$. This a minimum by the first derivative test.
B) (15) Using the definition (not the Evaluation Theorem) compute

$$
\int_{2}^{3} x^{2}+4 x d x
$$

The following formulas may be useful:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Solution: For the right-hand Riemann sum, we have $\Delta x=\frac{3-2}{n}=\frac{1}{n}$ and $x_{i}=2+\frac{i}{n}$. Then

$$
\begin{aligned}
\int_{2}^{3} x^{2}+4 x d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\left(2+\frac{i}{n}\right)^{2}+4\left(2+\frac{i}{n}\right)\right) \frac{1}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i^{2}}{n^{2}}+\frac{8 i}{n}+12\right) \frac{1}{n} \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{n^{3}} \sum_{i=1}^{n} i^{2}+\frac{8}{n^{2}} \sum_{i=1}^{n} i+12\right) \\
& =\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{n^{3}}+\frac{8 n(n+1)}{2 n^{2}}+12 \\
& =\frac{1}{3}+\frac{8}{2}+12=\frac{49}{3} .
\end{aligned}
$$

(Check by Evaluation Theorem:

$$
\left.\int_{2}^{3} x^{2}+4 x d x=\frac{x^{3}}{3}+\left.2 x^{2}\right|_{2} ^{3}=9+18-\frac{8}{3}-8=\frac{49}{3} .\right)
$$

