MATH 136 - Advanced Placement Calculus Solutions for Resubmitted Problems - Problem Set 4

October 26, 2009
4.3/12. (a) We have $f(x)=\cos ^{2}(x)-2 \sin (x)$, so $f^{\prime}(x)=-2 \cos (x) \sin (x)-2 \cos (x)=$ $-2 \cos (x)(\sin (x)+1)$. So $f^{\prime}(x)=0$ at $x=\frac{\pi}{2}$ and $\frac{3 \pi}{2}$ in the interval [$\left.0,2 \pi\right]$. Since $\sin (x)+1 \geq 0$, the sign of $-\cos (x)$ gives the sign of f^{\prime} and this is negative on $\left[0, \frac{\pi}{2}\right)$ and $\left(\frac{3 \pi}{2}, 2 \pi\right]$, positive on $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$.
(b) By the first derivative test, $f(x)$ has a local maximum at $x=\frac{3 \pi}{2}$ and a local minimum at $x=\frac{\pi}{2}$.
(c) The second derivative is

$$
\begin{aligned}
f^{\prime \prime}(x) & =2 \sin ^{2}(x)-2 \cos ^{2}(x)+2 \sin (x) \\
& =2 \sin ^{2}(x)-2\left(1-\sin ^{2}(x)\right)+2 \sin (x) \\
& =4 \sin ^{2}(x)+2 \sin (x)-2 \\
& =2(\sin (x)+1)(2 \sin (x)-1)
\end{aligned}
$$

Now, $\sin (x)=-1$ at $x=\frac{3 \pi}{2}$, while $\sin (x)=\frac{1}{2}$ at $x=\frac{\pi}{6}$ and $x=\frac{5 \pi}{6}$. Of these, only $x=\frac{\pi}{6}$ and $x=\frac{5 \pi}{6}$ are inflection points because $f^{\prime \prime}(x)$ does not change sign at $x=\frac{3 \pi}{2}$. (Note that $f^{\prime}(x)$ has a double root at $x=\frac{3 \pi}{2}$. This means that the graph of $f(x)$ is very "flat" around the maximum, but the concavity does not change there.)
4.4/14. The limit $\lim _{x \rightarrow \infty} \frac{(\ln (x))^{2}}{x}$ is indeterminate of the form ∞ / ∞. Applying L'Hopital a first time, we examine

$$
\lim _{x \rightarrow \infty} \frac{2 \ln (x) \frac{1}{x}}{1}=\lim _{x \rightarrow \infty} \frac{2 \ln (x)}{x}
$$

Since this is still indeterminate of the form ∞ / ∞, we apply L'Hopital's Rule a second time:

$$
\lim _{x \rightarrow \infty} \frac{\frac{2}{x}}{1}=0 .
$$

Hence the original limit is 0 also.
$4.6 / 12$. Let x be the side of the base of the box and y be the height. We have $32000=x^{2} y$, so $y=\frac{32000}{x^{2}}$. The surface area of the bottom and the sides (no top) is

$$
S=x^{2}+4 x y=x^{2}+4 x \frac{32000}{x^{2}}=x^{2}+\frac{168000}{x}
$$

Now we differentiate with respect to x and set the derivative equal to zero to find the critical numbers:

$$
0=S^{\prime}=2 x-\frac{168000}{x^{2}}=0 \Rightarrow x^{3}=64000
$$

so $x=40$. Substituting back, $y=\frac{32000}{1600}=20$. This is a minimum of the S function (and the material needed for the box), since $S^{\prime \prime}=2+\frac{336000}{x^{3}}>0$ for all $x>0$. The second
derivative test shows that S has a local minimum at $x=40$, and this is a global minimum since it is the only critical number for $x>0$ and S is differentiable for all $x>0$.
4.8/30. Given $f^{\prime \prime}(x)=8 x^{3}+5$, and $f^{\prime}(1)=8, f(1)=0$. Integrating once, $f^{\prime}(x)=$ $2 x^{4}+5 x+c$. Then substituting $x=1$ gives $8=f^{\prime}(1)=2+5+c$. Hence $c=1$. Integrating again, $f(x)=\frac{2}{5} x^{5}+\frac{5}{2} x^{2}+x+d$. Substituting $x=1$ again, $\frac{2}{5}+\frac{5}{2}+1+d=0$. Hence $d=\frac{-(4+25+10)}{10}=\frac{-39}{10}$. Then

$$
f(x)=\frac{2}{5} x^{5}+\frac{5}{2} x^{2}+x-\frac{39}{10} .
$$

