Mathematics 136, section 2 - AP Calculus
Solutions for Final Exam Practice Questions
December 14, 2009
I.
A) The graph $y=2 f(x-2)+1$ would be obtained by shifting the graph $y=f(x)$ to the right by 2 units, stretching vertically by a factor of 2 , then shifting the resulting graph up by 1 unit.
B) The graph $y=-f(-x)$ would be obtained by reflecting the graph $y=f(x)$ across the y-axis, then reflecting the resulting graph across the x-axis.
II.
A) For problems of this kind, look for where the given graph has horizontal tangents (zeroes of f^{\prime}), and positive and negative slopes. I will look for qualitative information rather than any quantitative estimates of actual slope values.
B) These are the reverse of question A. When $f(x)$ is >0, the antiderivative $g(x)$ is increasing. When $f(x)<0$, the antiderivative $g(x)$ is decreasing. $g(x)$ will have local maxima at x-values where f changes from positive to negative, and local minima where f changes from negative to positive (First Derivative Test).
III.
A) The derivative $f^{\prime}(a)$ is:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

provided that the limit exists.
B) The definite integral of $f(x)$ over $[a, b]$ is the limit of the Riemann sums

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided that the limit exists (independently of the choice of the x_{i}^{*}).
C) Let $f(x)$ be continuous on $[a, b]$. Then

1) the function

$$
G(x)=\int_{a}^{x} f(t) d t
$$

is an antiderivative of $f(x)$ on (a, b) (that is $G^{\prime}(x)=f(x)$ for all x in $\left.(a, b)\right)$.
2) If $F(x)$ is any antiderivative of $f(x)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

IV.
A) The plate is a 6×4 rectangle. Subdivide it into 6 vertical strips of width $\Delta x=1$ at the given x-values. Since the density of the metal does not depend on y, we can estimate the density in any vertical strip by a density value from the table on that strip times the area of the strip. Using the left endpoints, for instance, this gives

$$
M \doteq 200 \cdot 1 \cdot 4+190 \cdot 1 \cdot 4+170 \cdot 1 \cdot 4+140 \cdot 1 \cdot 4+100 \cdot 1 \cdot 4+90 \cdot 1 \cdot 4=3560
$$

grams.
B) Since we used the left endpoints, and the density appears to be decreasing left-to-right across the plate, this estimate is probably too large.
V.
A) Use a u-substitution on each term:

$$
\begin{aligned}
\int_{0}^{1} \cos (\pi x)-x^{2} e^{x^{3}} d x & =\frac{1}{\pi} \sin (\pi x)-\left.\frac{1}{3} e^{x^{3}}\right|_{0} ^{1} \\
& =0-\frac{1}{3} e+\frac{1}{3} \\
& =\frac{1}{3}(1-e) .
\end{aligned}
$$

B) We integrate by parts twice letting u be the power of x each time:

$$
\begin{aligned}
\int x^{2} \sin (3 x) d x & =\frac{-x^{2}}{\cos (3 x)}+\frac{2}{3} \int x \cos (3 x) d x \\
& =\frac{-x^{2}}{3} \cos (3 x)+\frac{2}{3}\left(\frac{x}{3} \sin (3 x)-\frac{1}{3} \int \sin (3 x) d x\right) \\
& =\frac{-x^{2}}{3} \cos (3 x)+\frac{2 x}{9} \sin (3 x)+\frac{2}{27} \cos (3 x)+C
\end{aligned}
$$

C) The partial fractions look like

$$
\frac{x}{(x+3)\left(x^{2}+1\right)}=\frac{A}{x+3}+\frac{B x+C}{x^{2}+1} .
$$

Clearing denominators gives:

$$
x=A\left(x^{2}+1\right)+(B x+C)(x+3),
$$

or

$$
x=(A+B) x^{2}+(3 B+C) x+(3 C+A) .
$$

Hence $A+B=0,3 B+C=1$, and $3 C+A=0$. From the last equation, $A=-3 C$. So the first equation becomes $B-3 C=0$ and the second is $3 B+C=1$. Then
$(B-3 C)+3(3 B+C)=10 B=3$, so $B=\frac{3}{10}, C=\frac{1}{10}$, and $A=\frac{-3}{10}$. Integrating the partial fractions gives:

$$
\begin{aligned}
\int \frac{\frac{-3}{10}}{x+3}+\frac{\frac{3}{10} x+\frac{1}{10}}{x^{2}+1} d x & =\frac{-3}{10} \int \frac{1}{x+3} d x+\frac{3}{10} \int \frac{x}{x^{2}+1} d x+\frac{1}{10} \int \frac{1}{x^{2}+1} d x \\
& =\frac{-3}{10} \ln |x+3|+\frac{3}{20} \ln \left(x^{2}+1\right)+\frac{1}{10} \tan ^{-1}(x)+C .
\end{aligned}
$$

D) Completing the square gives

$$
\int \frac{d x}{\sqrt{(x-8)^{2}+1}}
$$

We let $x-8=\tan \theta$, so $d x=\sec ^{2} \theta d \theta$, and the integral becomes

$$
\int \frac{\sec ^{2} \theta d \theta}{\sqrt{\tan ^{2} \theta+1}}=\int \sec \theta d \theta
$$

Using the appropriate entry from the integral table, this gives

$$
=\ln |\sec \theta+\tan \theta|+C=\ln \left|\sqrt{(x-8)^{2}+1}+x-8\right|+C .
$$

VI.
A) The cross-sections by planes $x=$ constant are washers, so the volume is computed by the integral

$$
V=\int_{0}^{2} \pi\left(4-x^{2}\right)^{2} d x=\frac{256 \pi}{15}
$$

B) The cross-sections by planes $y=$ constant are washers with outer radius 3 and inner radius $3-\sqrt{4-y}$. So the volume is

$$
V=\int_{0}^{4} \pi(3)^{2}-\pi(3-\sqrt{4-y})^{2} d y=24
$$

C) The coordinates of the centroid are

$$
\bar{x}=\frac{\int_{0}^{2} x\left(4-x^{2}\right) d x}{\int_{0}^{2} 4-x^{2} d x}=\frac{3}{4},
$$

and

$$
\bar{y}=\frac{\int_{0}^{2} \frac{1}{2}\left(4-x^{2}\right)^{2} d x}{\int_{0}^{2} 4-x^{2} d x}=\frac{8}{5} .
$$

VII.
A) Graph omitted - the curves $x y=c$ are rectangular hyperbolas with asymptotes along the coordinate axes.
B) Separating variables and integrating:

$$
\begin{aligned}
\int \frac{d y}{y} & =\int x d x \\
\ln |y| & =\frac{x^{2}}{2}+C \\
y & =k e^{x^{2} / 2}
\end{aligned}
$$

where $k= \pm e^{C}$. To get $y(0)=4$, we want $k=4$, so the solution is

$$
y=4 e^{x^{2} / 2}
$$

VIII.
A) The differential equation is $\frac{d T}{d t}=k(T-A)$.
B) The solution, after separating and integrating is

$$
T=A+k e^{k t}
$$

C) Using the result from B with $A=70$, we have $T(0)=200$, so $k=130$. Then at $t=5$, $170=70+130 e^{5 k}$, so

$$
k=\frac{1}{5} \ln \left(\frac{10}{13}\right)=-.0525 .
$$

Then we want the time t when $120=70+130 e^{(-.0525) t}$, so

$$
t=\frac{\ln \left(\frac{50}{130}\right)}{-.0525} \doteq 18.2
$$

minutes.
IX. Put the top of the punch bowl at $y=0$. The work done is

$$
W=\int_{-0.5}^{0} \pi\left(\sqrt{(.5)^{2}-y^{2}}\right)^{2} \cdot 950 \cdot 9.8(0-y) d y \doteq 457
$$

Joules. (Note: 1 J is $1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{sec}^{2}$.)
X.
A) Since $0<\frac{e}{\pi}<1$, the geometric series converges to

$$
\frac{1}{1-\frac{e}{\pi}}=\frac{\pi}{\pi-e}
$$

B) For each $k \geq 0$, the k th derivative of $f(x)=e^{2 x}$ at $a=0$ is $f^{(k)}(0)=2^{k}$. So the Taylor series is

$$
\sum_{k=0}^{\infty} \frac{2^{k} x^{k}}{k!}=1+2 x+\frac{4 x^{2}}{2!}+\frac{8 x^{3}}{6!}+\cdots
$$

C) The fifth degree Taylor polynomial of $\sin (x)$ at $a=0$ is

$$
p_{5}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
$$

At $x=.6$, this gives

$$
\sin (.6) \doteq p_{5}(.6)=.564648
$$

The actual value of $\sin (.6)$ is about .564642 , so the absolute error is about .000006 .

