ADVANCES IN MATHEMATICS OF COMMUNICATIONS WEB SITE: http://www.aimSciences.org
VoLuME 2, No. 3, 2008, 344-345

ERRATUM
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(Communicated by Mike O’Sullivan)

Erratum to “The ubiquity of order domains for the construction of error control
codes” (Advances in Mathematics of Communications, Vol.1, no.1, 2007, 151-171).

Let X be a projective variety defined over F,, and let v be a valuation on the
function field K(X). In Theorem 2 of [1], it was claimed that if v has rational rank
d = dim X and v is centered at a smooth point of X at infinity, then p = —v|g
defines an order function on the affine coordinate ring R. The author would like to
thank Matti Viikinkoski for pointing out that these hypotheses do not necessarily
imply that v(f) < 0 for all f € R, hence this claim is incorrect as stated.

For instance, there are examples of valuations on the function fields of surfaces
such as the following (Example 3.4 of [2]). Let X = P? over F,, let Q be the
point at infinity with homogeneous coordinates (X : Y : Z) = (1 : 0: 0), and let
u=Y/X and w = Z/X be local coordinates at (). The local ring Ox g of X at
Q is isomorphic to Fy [u, w](y,w)- We can define v(w) =1 and v(u) = V2 on Ox,0
and extend v to the function field of X'. This yields a non-discrete valuation whose
value group is isomorphic to the additive group of real numbers of the form r +sv/2,
r,s € Z, which contains elements arbitrarily close to zero.

The valuation ring S, can be understood in terms of a sequence of blow-ups of
X, or in terms of the continued fraction expansion of the irrational number /2:

V2 = [ag;a1,a9,--- | = [1;2,2,--- ].

The valuation ring S, is generated by ug = u, wg = w and the sequence of functions
produced by iterating

w
Wit1 = uijwy’, Uiyl = Wy,
which yields
u w? u®
w, = —, w2:_27 w3:_77
w u w

The valuations of this sequence, v(w;) = V2 -1, v(wy) = 3—2v2, v(w3) = 5v/2 -7
are all positive and li_>m v(wy,) = 0. Now, the odd-numbered terms in the sequence
n o
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of w; are actually polynomials in the affine coordinates x = X/Z and y =Y/Z. For

. Y/X
instance, wy = ¢ = Z;—X =y,

BTN 72 Sy
vt (Z/X)T ’
and so forth. Hence v is not negative on all of the elements of the affine coordinate
ring R = F,[z,y], even though every nonconstant element of R has a pole along the
hyperplane at infinity. As a result, p = —v|g does not give an order function on R
in this case. Not every non-discrete valuation gives counterexamples to Theorem 2
of [1], however. So the theorem should be corrected as follows.

Theorem 2. Let R be an affine domain over Iy, that is

R =Ty [Xq,...,X;]/I,
where I is a prime ideal. Let X be the projective closure of V(I) in P%, and let
Hy (with reduced scheme structure) be the intersection of X with the hyperplane at

infinity. Assume Hy is an irreducible divisor on X. Let v be any valuation on the
function field K(X) with value group A such that

1. the rational rank of v is d = dim X, and
2. v is centered at a smooth point Q € Hy C X.
3. v(f) <0 in A for all f € R.

Then p = —v|g is an order function on R.

The proof given in [1] erroneously claims that condition (3) follows from the
others. With the extra hypothesis, the proof goes through.
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