MATH 136 - Calculus 2
 First Practice on Improper Integrals

February 25, 2020

Background

Whenever $a=-\infty$ or $b=+\infty$ or both, the integral

$$
\int_{a}^{b} f(x) d x
$$

is said to be an improper integral. Improper integrals are always handled by taking limits of "ordinary" integrals.

- We say $\int_{a}^{\infty} f(x) d x$ converges if the limit

$$
\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

exists and we say the integral diverges otherwise.

- We say $\int_{-\infty}^{b} f(x) d x$ converges if the limit

$$
\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

exists and we say the integral diverges otherwise.

- We say $\int_{-\infty}^{\infty} f(x) d x$ converges if, splitting at any finite value c (often at $c=0$), both of the limits here:

$$
\lim _{a \rightarrow-\infty} \int_{a}^{c} f(x) d x+\lim _{b \rightarrow+\infty} \int_{c}^{b} f(x) d x
$$

exist and we say the integral diverges otherwise. (Note this says that if either one of the two limits does not exist, then the integral diverges.)

When $[a, b]$ is a finite interval, the integral

$$
\int_{a}^{b} f(x) d x
$$

is also said to be improper whenever $f(x)$ has one or more discontinuities in the interval $[a, b]$. These can happen at the endpoints a or b, or at some c in (a, b). In all cases, improper integrals are handled by taking limits of "ordinary" integrals. For the purposes of this discussion, let us suppose that $f(x)$ has only one point of discontinuity in the interval.

- If f is discontinuous at a, then we say $\int_{a}^{b} f(x) d x$ converges if the limit

$$
\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

exists and we say the integral diverges otherwise.

- If f is discontinuous at b, then we say $\int_{a}^{b} f(x) d x$ converges if the limit

$$
\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

exists and we say the integral diverges otherwise.

- If f is discontinuous at d in (a, b), then we say $\int_{a}^{b} f(x) d x$ converges if both of the limits here:

$$
\lim _{c \rightarrow d^{-}} \int_{a}^{c} f(x) d x+\lim _{c \rightarrow d^{+}} \int_{c}^{b} f(x) d x
$$

exist and we say the integral diverges otherwise. (Note this says that if either one of the two limits does not exist, then the integral diverges.)

Questions

For each of the following,
(i) Explain why the integral is improper.
(ii) Set up the appropriate limit(s) and evaluate.
(iii) Say whether the integral converges or diverges.

1. $\int_{-\infty}^{2} e^{10 x} d x$

Solution: This is improper because of the infinite lower limit of integration. We have

$$
\lim _{a \rightarrow-\infty} \int_{a}^{2} e^{10 x} d x=\lim _{a \rightarrow-\infty} \frac{1}{10}\left(e^{20}-e^{a}\right)=\frac{1}{10} e^{20}
$$

Hence the integral converges.
2. $\int_{4}^{\infty} \frac{1}{x^{2}+16} d x$

Solution: For this and the next example, we use the indefinite integration formula.

$$
\int \frac{1}{x^{2}+16} d x=\frac{1}{4} \tan ^{-1}(x / 4)+C
$$

This integral is improper because of the infinite upper limit of integration. We have

$$
\begin{aligned}
\left.\lim _{b \rightarrow \infty} \frac{1}{4} \tan ^{-1}(x / 4)\right|_{4} ^{b} & =\lim _{b \rightarrow \infty} \frac{1}{4}\left(\tan ^{-1}(b / 4)-\frac{\pi}{4}\right) \\
& =\frac{1}{4}\left(\frac{\pi}{2}-\frac{\pi}{4}\right) \\
& =\frac{\pi}{16}
\end{aligned}
$$

The integral converges.
3. $\int_{-\infty}^{\infty} \frac{1}{x^{2}+16} d x$

Solution: This is improper because both limits of integration are infinite. The integral equals

$$
\lim _{a \rightarrow-\infty} \int_{a}^{0} \frac{1}{x^{2}+16} d x+\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{1}{x^{2}+16} d x
$$

Using the formula from the previous problem, this equals

$$
\lim _{a \rightarrow-\infty}-\frac{1}{4} \tan ^{-1}(a / 4)+\lim _{b \rightarrow \infty} \frac{1}{4} \tan ^{-1}(b / 4)=\frac{\pi}{8}+\frac{\pi}{8}=\frac{\pi}{4}
$$

The integral converges.
4. $\int_{1}^{2} \frac{1}{\sqrt[3]{x-1}} d x$

Solution: Improper because the function is discontinuous at $a=1$ (an infinite discontinuity). Using a u-substitution, the integral is

$$
\left.\lim _{a \rightarrow 1^{+}} \frac{3}{2}(x-1)^{2 / 3}\right|_{a} ^{2}=\lim _{a \rightarrow 1^{+}} \frac{3}{2}\left(1-(a-1)^{2 / 3}\right)=\frac{3}{2} .
$$

Since the limit is finite, the integral converges. (Note this would not be true if the exponent of the $x-1$ in the original integral was ≥ 1.) The original
5. $\int_{0}^{2} \frac{1}{x^{2}-5 x+6} d x$

Solution: Improper because the function is discontinuous at $x=2$. By partial fractions, the integral is $-\ln |x-2|+\ln |x-3|$. Then

$$
\lim b \rightarrow 2^{-}-\ln |b-2|+\ln |b-3|+\ln |-2|-\ln |-3|
$$

does not exist because $y=\ln |x|$ has a vertical asymptote at $x=0$. This integral diverges.
6. $\int_{1}^{3} \frac{1}{x^{2}-4 x+4} d x$

Solution: This integral is improper because the function

$$
\frac{1}{x^{2}-4 x+4}=\frac{1}{(x-2)^{2}}
$$

is discontinuous at $x=2$ in the interior of the interval of integration (an infinite discontinuity). We need to see whether

$$
\lim _{b \rightarrow 2^{-}} \int_{1}^{b} \frac{1}{(x-2)^{2}} d x
$$

and

$$
\lim _{a \rightarrow 2^{+}} \int_{a}^{3} \frac{1}{(x-2)^{2}} d x
$$

exist. But actually neither of them does because

$$
\int \frac{1}{(x-2)^{2}} d x=-\frac{1}{x-2}
$$

still has an infinite discontinuity at 2 . This says that neither limit above exists. This integral diverges. (Note: The conclusion would be the same if either one of the limits failed to exist; it is not necessary that both fail to exist for the integral to diverge).

