Note: The incorrect answers have been deleted and the correct answer left in place.
1.

$$
\int 4 x^{2}+3 x+1 d x=
$$

(B)

$$
\frac{4}{3} x^{3}+\frac{3}{2} x^{2}+x+C
$$

2. 

$$
\int x e^{x} d x=
$$

(C)

$$
x e^{x}-e^{x}+C
$$

(Check with the product rule for derivatives.)
3.

$$
\int x\left(x^{2}+1\right)^{3 / 2} d x=
$$

(D)

$$
\frac{1}{5}\left(x^{2}+1\right)^{5 / 2}+C
$$

(Check with the chain rule for derivatives.)
4.

$$
\int x \cos \left(3 x^{2}\right) d x=
$$

(C)

$$
\frac{1}{6} \sin \left(3 x^{2}\right)+C
$$

(Check with the chain rule for derivatives.)
5.

$$
\int \sin (x) \cos (x) d x
$$

(A)

$$
\frac{-1}{2} \cos ^{2}(x)+C
$$

(C)

$$
\frac{1}{2} \sin ^{2}(x)+C
$$

Both are correct by the chain rule for derivatives. Note also that these are equivalent by the trig indentity

$$
\sin ^{2}(x)+\cos ^{2}(x)=1
$$

Every function in the form (A) can also be written in the form (C), but with a different constant value.
6.

$$
\int \frac{1}{1+x^{2}} d x
$$

(B)

$$
\tan ^{-1}(x)+C=\arctan (x)+C
$$

