College of the Holy Cross, Spring 2020
 Math 136, section 1, Solutions for Midterm Exam 1 Friday, February 21

I.
A. (10) Evaluate the L_{4} Riemann sum for $f(x)=e^{x^{2}}$ on the interval $[a, b]=[0,2]$.

Solution: We have $\Delta x=\frac{2-0}{4}=\frac{1}{2}$, so the partition is $0<\frac{1}{2}<1<\frac{3}{2}<2$. The L_{4} Riemann sum is

$$
\begin{aligned}
L_{4} & =\sum_{j=1}^{4} e^{x_{j-1}^{2}} \Delta x \\
& =e^{0} \cdot \frac{1}{2}+e^{1 / 4} \cdot \frac{1}{2}+e^{1} \cdot \frac{1}{2}+e^{9 / 4} \cdot \frac{1}{2} \\
& \doteq 7.245
\end{aligned}
$$

B. (10) The following limit of a sum would equal the definite integral $\int_{a}^{b} f(x) d x$ for some function $f(x)$ on some interval $[a, b]$. What function and what interval?

$$
\lim _{N \rightarrow \infty} \sum_{j=1}^{N} \sqrt{\left(\frac{5(j-1)}{N}\right)^{3}+4} \cdot \frac{5}{N} .
$$

Solution: The integral is $\int_{0}^{5} \sqrt{x^{3}+4} d x$. (The sum is the L_{N} Riemann sum for $f(x)=\sqrt{x^{3}+4}$ on $[0,5]$ and the limit of the Riemann sums gives the integral.)
II. All parts of this problem refer to

$$
A(x)=\int_{0}^{x} t(5-t) d t
$$

A. (10) Is $A(4)$ a positive or negative number? How can you tell?

Solution: $A(4)$ is positive since $f(x)=x(5-x)=5 x-x^{2}$ is ≥ 0 for all x in the interval [0,4$]$-the graph $y=f(x)$ is a parabola opening down and crossing the x-axis at $x=0$ and $x=5$.
B. (10) Where does $A(x)$ have critical points? Is each of them a local maximum, an local minimum, or neither?

Solution: $A^{\prime}(x)=x(5-x)$ by the FTC, part II. This equals 0 at $x=0$ and $x=5$. Those are the critical points. Since $f(x)=A^{\prime}(x)$ changes from negative to positive at $0, A(x)$ has a local minimum there. Since $f(x)=A^{\prime}(x)$ changes from positive to negative at $5, A(x)$ has a local maximum there.
C. (10) If $B(x)=A(\tan (x))=\int_{0}^{\tan (x)} t(5-t) d t$, find $B^{\prime}(x)$.

Solution: By the FTC part II and the chain rule:

$$
B^{\prime}(x)=A^{\prime}(\tan (x)) \sec ^{2}(x)=\tan (x)(5-\tan (x)) \sec ^{2}(x)
$$

III.
A. (10) Integrate with a suitable u-substitution: $\int\left(6 x^{5}+1\right)^{2 / 5} x^{4} d x$.

Solution: Let $u=6 x^{5}+1$. Then $d u=30 x^{4} d x$. So $x^{4} d x=\frac{1}{30} d u$ and the integral becomes

$$
\int u^{2 / 5} \frac{1}{30} d u=\frac{1}{30} \cdot \frac{5}{7} u^{7 / 5}+C=\frac{1}{42}\left(6 x^{5}+1\right)^{7 / 5}+C .
$$

B. (10) Integrate by parts: $\int x^{2} \cos (4 x) d x$

Solution: We integrate by parts twice, letting $u=x^{2}$, then $u=x$:

$$
\begin{aligned}
\int x^{2} \cos (4 x) d x & =\frac{x^{2} \sin (4 x)}{4}-\frac{2}{4} \int x \sin (4 x) d x \\
& =\frac{x^{2} \sin (4 x)}{4}-\frac{1}{2}\left(\frac{-x \cos (4 x)}{4}+\frac{1}{4} \int \cos (4 x) d x\right) \\
& =\frac{x^{2} \sin (4 x)}{4}+\frac{x \cos (4 x)}{8}-\frac{\sin (4 x)}{32}+C
\end{aligned}
$$

C. (10) Integrate: $\int \sec ^{5}(x) d x$

Solution: Using the ST3 (twice) and ST4 formulas:

$$
\int \sec ^{5}(x) d x=\frac{\sec ^{3}(x) \tan (x)}{4}+\frac{3 \sec (x) \tan (x)}{8}+\frac{3}{8} \ln |\sec (x)+\tan (x)|+C
$$

IV. (20) Integrate $\int_{-6}^{6} x^{2} \sqrt{36-x^{2}} d x$

Solution: From the form of the integrand, we know we want to use the trigonometric substitution $x=6 \sin \theta$, with $d x=6 \cos \theta d \theta$. Converting everything, including the limits of integration, we have

$$
1296 \int_{-\pi / 2}^{\pi / 2} \sin ^{2} \theta \cos ^{2} \theta d \theta
$$

For this integral we can use either the SC 3 or SC 4 reduction formula. Here's how it turns out if you use SC 3 to reduce the power of sine, then SC 2 to reduce the power of cosine:

$$
\begin{aligned}
& =1296\left(\left.\frac{-\sin \theta \cos ^{3} \theta}{4}\right|_{-\pi / 2} ^{\pi / 2}+\frac{1}{4} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \theta d \theta\right) \\
& =1296\left(0+\left.\frac{\cos \theta \sin \theta}{8}\right|_{-\pi / 2} ^{\pi / 2}+\left.\frac{\theta}{8}\right|_{-\pi / 2} ^{\pi / 2}\right) \\
& =1296\left(0+0+\frac{\pi}{8}\right) \\
& =162 \pi .
\end{aligned}
$$

Note: You can also convert the indefinite integral back to an equivalent function of x and subsitute the original limits of integration $x=-6$ and $x=6$.

