MATH 135 - Calculus 1 Answers for Sample Questions for Exam 1

September 19, 2019
I. Express the set of x satisfying $|2 x-5|>1$ as an interval or union of intervals. Answer: $|2 x-5|>1$ is equivalent to $2 x-5>1$ or $2 x-5<-1$. The first says $2 x>6$, so $x>3$. The second says $2 x<4$, so $x<2$. Another way to write this is as the union of the two intervals: $(-\infty, 2) \cup(3, \infty)$.
II. The following table contains values for three different functions: $f(x), g(x), h(x)$.

x	0	0.1	0.2	0.3	0.4
$f(x)$	-4.2	-5.9	-7.6	-9.3	-11.0
$g(x)$	10	20	40	80	160
$h(x)$	4	2.3	1.5	2.1	6.1

A) One of these is a linear function. Explain how you can tell which one it is, and give a formula for it.

Answer: $f(x)$ is the linear one, since each change of .1 in x changes $f(x)$ by -1.7 . The formula is $f(x)=-17 x-4.2$
B) One of these functions is neither linear nor exponential. Explain which one that is and why. Answer: Exponential and linear functions are either increasing for all x or decreasing for all x. That is not true for $h(x)$.
C) Give a possible formula for $g(x)$. (Hint: the values are doubling every time x increases by .1.) Answer: $g(x)=102^{t / .1}=10\left(2^{10}\right)^{t}=10(1024)^{t}$
III. All parts refer to $f(x)=-3 x^{2}+12 x+21$.
A) Where does the graph $y=f(x)$ cross the x-axis?

Answer: By the quadratic formula, when $-3 x^{2}+12 x+21=0, x=\frac{-12 \pm \sqrt{144+252}}{-6}=2 \pm \sqrt{11} \doteq$ -1.317, 5.317.
B) Where does the graph $y=f(x)$ cross the y-axis.

Answer: This happens when $x=0$, so $y=21$.
D) Sketch the graph $y=-3 x^{2}+12 x+21$ for x in $[-4,4]$ and showing correct scales on both the x - and y-axes.

Answer: The graph is a parabola opening down from the vertex $(2,33)$ like this:

Figure 1: Figure for Question III, part D
IV. You start at $x=0$ at time $t=0$ (hours) and drive along the x-axis (x values in miles) at 40 miles an hour for 2 hours. At $t=2$ you stop for one hour. Then starting at $t=3$, you retrace your earlier path and return to your starting position at 80 miles per hour.
A) Sketch the graph of your position as a function of time.

Answer: See graph on next page.
B) Give (piecewise) formulas for your function on the appropriate t-intervals.

Answer:

$$
x(t)= \begin{cases}40 t & \text { if } 0 \leq t \leq 2 \\ 80 & \text { if } 2<t \leq 3 \\ 80-80(t-3) & \text { if } 3 t \leq 4\end{cases}
$$

V.
A) Express the domain of the function $f(x)=\frac{x}{x^{2}-1}$ as a union of intervals.

Answer: It is all $x \neq-1,1$, so $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$
B) The figure for this problem shows the graph $y=\frac{x}{x^{2}-1}$. Based on this, what can you say about the range of $f(x)$?

Figure 2: Figure for Question IV,A

Figure 3: Figure for Question V

Figure 4: Figure for Question V,D

Answer: Seems to be all real numbers: \mathbb{R}, or $(-\infty, \infty)$
C) Explain why $f(x)$ (on its default domain) fails to have an inverse function.

Answer: The graph does not pass the horizontal line test, so $f(x)$ is not one-to-one.
D) Give a restricted domain on which $f(x)$ does have an inverse function, and sketch the graph of the inverse.

Answer: The interval of x-values $(-1,1)$ is one such. (The intervals $(1, \infty)$ and $(-\infty,-1)$ would be others.)
VI.
A) What are the amplitude and period of the sinusoidal function $y=3 \sin \left(\frac{x}{2}\right)$?

Answer: Amplitude $=3$, period $=4 \pi$.
B) What would change in your answer to B) if the formula was $y=\frac{1}{3} \sin (2 x)+2$? Answer: The amplitude would change to $\frac{1}{3}$ and the period would change to π.
VII.
A) Simplify: $\log _{3}(27)+\ln \left(e^{-3}\right)$.

Answer: 0
B) Solve for $x: 2^{x+3}=3^{x / 2}$.

Answer: $x=\frac{6 \ln (2)}{\ln (3)-2 \ln (2)}$.
C) The population of a city (in millions) at time t (years) is $P(t)=2.4 e^{0.06 t}$. What is the population at $t=0$? When will the population reach 4 million?

Answer: Population at time $t=0$ is $P(0)=2.4$ million. The population reaches 4 million at $t=\frac{\ln (4 / 2.4)}{.06} \doteq 8.5$ years.
D) (Continuation of C) How long will it take for the population to reach double the number at $t=0$?

Answer: $t \doteq 11.6$ years.
VIII. Let $f(x)$ be the function tabulated below.

$$
\begin{array}{c|ccccc}
x & 0 & 0.1 & 0.2 & 0.3 & 0.4 \\
\hline f(x) & -3 & -5.9 & -7.6 & -8 & -12.0
\end{array}
$$

A) What is the average rate of change of $f(x)$ over the interval $[0.1,0.2]$?

Answer: The average rate of change is

$$
\frac{f(.2)-f(.1)}{.2-.1}=\frac{-7.6-(-5.9)}{.1}=-17
$$

B) Same question for the interval $[0.2,0.3]$.

Answer: Compute:

$$
\frac{f(.3)-f(.2)}{.3-.2}=\frac{-8-(-7.6)}{.1}=-4
$$

C) Given the information you have, what is your best estimate for the instantaneous rate of change at $t=0.2$?

Answer: The best estimate would come by averaging the answers from parts A and B, so $\frac{-17+(-4)}{2}=-10.5$.
IX. Investigate

$$
\lim _{x \rightarrow 0} \frac{2^{x}-1}{3^{x}-1}
$$

numerically by computing the values of $f(x)=\frac{2^{x}-1}{3^{x}-1}$ at $x=-.1,-.01,-.001, .001, .01, .1$. What's your estimate of the value of this limit?

Figure 5: Figure for Question X

Answer: We compute the following values (with a calculator, rounding to 4 decimal places):

x	-.1	-.01	-.001	.001	.01	.1
$f(x)$.6437	.6322	.6311	.6308	.6297	.6181

From this evidence it seems the limit should be between .6311 and .6308 something like .6310 or .6309. Note: With calculus, we will be able to show later that the exact value is $\frac{\ln (2)}{\ln (3)} \doteq .6309$.
X. Consider the function graphed in Figure 5.
A) What is $\lim _{x \rightarrow 0} f(x)$?

Answer: $\lim _{x \rightarrow 0} f(x)=3$
B) What are $\lim _{x \rightarrow 2^{-}} f(x)$ and $\lim _{x \rightarrow 2^{+}} f(x)$?

Answer: $\lim _{x \rightarrow 2^{-}} f(x)=0$ and $\lim _{x \rightarrow 2^{+}} f(x)=-1$
C) What does your answer to part B say about $\lim _{x \rightarrow 2} f(x)$?

Answer: It says that $\lim _{x \rightarrow 2} f(x)$ does not exist. (The two one sided limits must exist and be the same for $\lim _{x \rightarrow 2} f(x)$ to exist.)

