College of the Holy Cross
 Math 135, Section 1 - Solutions for Midterm Exam 2 Friday, November 1

I. Compute the indicated limits. You must show all necessary work to justify your answer to receive full credit.
(a) (5) $\lim _{x \rightarrow 1} \frac{x^{2}-5 x+2}{2 x^{2}-2 x+3}$

Solution: The top is going to -2 and the bottom is going to 3 as $x \rightarrow 1$. By the Limit Quotient Rule, the limit is $=-2 / 3$.
(b) (5) $\lim _{x \rightarrow 1} \frac{x^{2}-7 x+6}{2 x^{2}-2 x}$

Solution: This is a $0 / 0$ indeterminate limit so we should factor the top and bottom and try to cancel:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{2}-7 x+6}{2 x^{2}-2 x} & =\lim _{x \rightarrow 1} \frac{(x-6)(x-1)}{2 x(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{x-6}{2 x} \\
& =-5 / 2
\end{aligned}
$$

(c) (5) $\lim _{x \rightarrow \infty} \frac{x^{2}-5 x+2}{2 x^{2}-2 x+3}$

Solution: Divide the top and bottom by x^{2} then take the limit as $x \rightarrow \infty$:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}-5 x+2}{2 x^{2}-2 x+3} & =\lim _{x \rightarrow \infty} \frac{1-5 / x+2 / x^{2}}{2-2 / x+3 / x^{2}} \\
& =1 / 2
\end{aligned}
$$

(d) (5) $\lim _{\theta \rightarrow 0} \frac{\sin (4 \theta)}{\sin (5 \theta)}$

Solution: Since $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$, this limit equals

$$
\lim _{\theta \rightarrow 0} \frac{4}{5} \frac{\frac{\sin (4 \theta)}{4 \theta}}{\frac{\sin (5 \theta)}{5 \theta}}=\frac{4}{5}
$$

1. The graph of the function

$$
f(x)= \begin{cases}\frac{1}{x+1} & x<-1 \\ -x+2 & -1 \leq x \leq 0 \\ \frac{4 x^{3}-24 x^{2}+44 x-24}{x^{3}-5 x^{2}+2 x+8} & 0<x<3\end{cases}
$$

is shown in Figure 1.

(a) (10) What are $\lim _{x \rightarrow 0^{-}} f(x)$ and $\lim _{x \rightarrow 0^{+}} f(x)$? (In your answer say clearly which is which.)
Solution: $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}-x+2=2$ and

$$
\lim _{x \rightarrow 0^{+}}=\lim _{x \rightarrow 0^{+}} \frac{4 x^{3}-24 x^{2}+44 x-24}{x^{3}-5 x^{2}+2 x+8}=-3
$$

(These can also be estimated from the graph.
(b) (15) Find all x in $(-2,3)$ where f is discontinuous. Give the types of each of the discontinuities.
Solution: There are three: $x=-1$ is an infinite discontinuity since $\lim _{x \rightarrow-1^{-}} \frac{1}{x+1}=$ $-\infty . x=0$ is a jump discontinuity since the one-sided limits exist but are unequal. Finally, $x=2$ is a removable discontinuity. Note the open circle at $x=2$ in the graph. This is a reflection of the fact that the function

$$
\frac{4 x^{3}-24 x^{2}+44 x-24}{x^{3}-5 x^{2}+2 x+8}
$$

gives $0 / 0$ at $x=2$, but the limit as $x \rightarrow 2$ does exist and equals $2 / 3$.
2. Do not use the short-cut differentiation rules from Chapter 3 in this question.
(a) (5) State the limit definition of the derivative $f^{\prime}(x)$.

Solution:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(provided that the limit exists).
(b) (10) Estimate the derivative of $f(x)=\sqrt{x+2}$ at $a=7$ numerically by computing difference quotients of f with $h= \pm .1$, then $h= \pm .01$. Enter your values in the table below, and then state what your estimate of $f^{\prime}(7)$ is.

Solution:

h	-.1	-.01	.01	.1
difference quotient value	.1671	.1667	.1666	.1662

$f^{\prime}(6) \doteq . \underline{1666}$
(c) (10) Use the definition to compute the derivative function of $f(x)=\sqrt{x+2}$.

Solution: Multiply by the conjugate radical, simplify, and take the limit:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h} \\
& =\lim _{h t o 0}\left(\frac{\sqrt{x+h+2}-\sqrt{x+2}}{h}\right) \cdot\left(\frac{\sqrt{x+h+2}+\sqrt{x+2}}{\sqrt{x+h+2}+\sqrt{x+2}}\right) \\
& =\lim _{h \rightarrow 0} \frac{(x+h+2)-(x+2)}{h(\sqrt{x+h+2}+\sqrt{x+2})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h+2}+\sqrt{x+2})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h+2}+\sqrt{x+2}} \\
& =\frac{1}{2 \sqrt{x+2}}
\end{aligned}
$$

(d) (5) Find the equation of the line tangent to the graph $y=\sqrt{x+2}$ at $a=7$.

Solution: The point on the graph is $(7,3)$. The slope of the tangent line is $f^{\prime}(7)=\frac{1}{6}$ (You could also use the estimated value $f^{\prime}(x) \doteq .1666$ from part b.) The equation of the tangent line is

$$
y-3=\frac{1}{6}(x-7),
$$

or

$$
y=\frac{1}{6} x+\frac{11}{6}
$$

in slope-intercept form.
3. Use the short-cut rules to compute the following derivatives. You may use any correct method, but you must show work for full credit.
(a) (5) $\frac{d}{d x}\left(\frac{3}{\sqrt{x}}-e^{x}+3 x\right)$
(b) Solution: First rewrite the function using rules for exponents as

$$
3 x^{-1 / 2}-e^{x}+3 x
$$

Then the derivative is

$$
\frac{-3}{2} x^{-3 / 2}-e^{x}+3
$$

(c) $(10) \frac{d}{d v}\left(\left(v^{2}-2 v\right)\left(v^{3}+1\right)\right)$
(d) Solution: By the product rule, the derivative is

$$
\left(v^{2}-2 v\right)\left(3 v^{2}\right)+\left(v^{3}+1\right)(2 v-2)
$$

This form is OK by the directions. The simplified form is

$$
5 v^{4}-8 v^{3}+2 v-2
$$

(Note: This could also be done by multiplying out the product, then differentiating term by term using the power rule.)
(e) (10) $\frac{d}{d x}\left(\frac{x^{2}-4 x+3}{x^{4}-x}\right)$
(f) Solution: By the quotient rule, the derivative is

$$
\frac{\left(x^{4}-x\right)(2 x-4)-\left(x^{2}-4 x+3\right)\left(4 x^{3}-1\right)}{\left(x^{4}-x\right)^{2}} .
$$

Again, by the directions, this form is OK; the simplified form is

$$
\frac{-2 x^{5}+12 x^{4}-12 x^{3}-x^{2}+3}{\left(x^{4}-x\right)^{2}} .
$$

