College of the Holy Cross, Fall 2019 Math 135, Section 1, Solutions for Midterm 1 Friday, September 27

I. The following table contains values for three different functions: f(x), g(x), h(x).

x	2.5	3.4	4.3	5.2	6.1
f(x)	3	9	27	81	243
g(x)	12.1	13.2	14.3	15.4	16.5
h(x)	5.4	3.6	1.3	5.3	7.9

A) (15) One of these is a linear function. Explain how you can tell which one it is, and give a formula for it.

Solution: The function g(x) is linear since equal increments in x produce equal increments in g(x). Alternatively, the slopes between all pairs of points (x, g(x)) from the table are equal. The slope is

$$m = \frac{13.2 - 12.1}{3.4 - 2.5} = \frac{1.1}{.9} \doteq 1.22$$

and the equation of the line can be found by the point-slope form:

$$y - 12.1 \doteq (1.22)(x - 2.5)$$

or $y \doteq 1.22x + 9.05$ (the intercept is closer to 9.04 if more decimal places in the slope are used).

B) (10) One of these functions is *neither linear nor exponential*. Explain which one that is and why.

Solution: Exponential and linear functions are either always increasing or always decreasing. The third function h(x) is neither, so it is the one that is neither linear nor exponential.

II.

A) (10) Simplify using properties of logarithms and exponents. (No credit will be given for only an approximate calculator value.)

$$\log_3\left(\frac{\sqrt{3}}{\sqrt[4]{27}}\right)$$

Solution: By rules for exponents, this the same as

$$\log_3\left(\frac{3^{1/2}}{27^{1/4}}\right) = \log_3\left(\frac{3^{1/2}}{3^{3/4}}\right) = \log_3(3^{-1/4}) = \frac{-1}{4}$$

Simplified form: |-1/4|

B) (15) The population of a city (in millions) at time t (years) is $P(t) = 3.7e^{0.04t}$. When will the population reach 6.3 million?

Solution: We need to solve the equation

$$3.7e^{0.04t} = 6.3$$

for t. We divide by 3.7, then take natural logs to solve for the t in the exponent:

$$t = \frac{\ln(6.3/3.7)}{.04} \doteq 13.3$$

Time: (a bit more than) 13.3 years

III. Given $f(x) = \frac{1}{x^2 - 6x + 8}$ and $g(x) = \tan(x)$, but defined only for x in the interval $-3 \le x \le 3$. Answer the following questions.

A) (10) Which x between -3 and 3 must be removed to obtain

Solution: The x-values where f(x) are undefined can be found by either factoring:

$$x^2 - 6x + 8 = (x - 2)(x - 4)$$

or using the quadratic formula. So f(x) is undefined at x = 2, 4, but only x = 2 is contained in $-3 \le x \le 3$. The function $g(x) = \tan(x) = \frac{\sin(x)}{\cos(x)}$ is undefined at all the odd integer multiples of $\pi/2$ (the zeroes of $\cos(x)$). Of those, only $\pm \pi/2$ are contained in the interval $-3 \le x \le 3$.

the domain of f: x = 2 must be removed

the domain of g: $x = \pm \pi/2$ must be removed

B) (10) Using the Limit Laws, determine $\lim_{x \to 1} f(x)g(x)$.

Solution: By the Limit Product Law, and then the Limit Quotient Law and Limit Sum Law for f(x),

$$\lim_{x \to 1} f(x)g(x) = \lim_{x \to 1} f(x) \cdot \lim_{x \to 1} g(x)$$
$$= (\lim_{x \to 1} \frac{1}{x^2 - 6x + 8}) \cdot \lim_{x \to 1} \tan(x)$$
$$= \frac{1}{3} \cdot \tan(1)$$
$$\doteq .519$$

limit: The exact value is $\frac{1}{3} \tan(1) \doteq .519$

IV. (Make sure your calculator is set in radian mode for this problem.)

A) (20) Let $f(x) = \frac{\sin(5x)}{8x}$. Compute the values at $x = \pm \pi/10$, $x = \pm \pi/100$, $x = \pm \pi/100$ accurate to three decimal places and fill in the table below:

x	$-\pi/10$	$-\pi/100$	$-\pi/1000$	$\pi/1000$	$\pi/100$	$\pi/10$	
f(x)	.398	.622	.625	.625	.622	.398	

B) (10) What's your estimate of the value of the limit $\lim_{x\to 0} \frac{\sin(5x)}{8x}$ based on this numerical information?

limit: Proba

Probably around .625