MATH 135 - Calculus 1
Trigonometric Derivatives
October 28, 2019

Background

In today's video, we saw how the addition formulas for $\sin (x)$ and $\cos (x)$, combined with some trigonometric limits we saw back in Chapter 2 of the text lead to the derivative formulas:

$$
\frac{d}{d x} \sin (x)=\cos (x) \quad \text { and } \quad \frac{d}{d x} \cos (x)=-\sin (x) .
$$

Questions

(1) For each function, use the appropriate short-cut rules to find the first derivative, and then differentiate again to get the second derivative:
(a) $f(x)=3 \sin (x)+4 \cos (x)$.

Answer: $f^{\prime}(x)=3 \cos (x)-4 \sin (x)$ and $f^{\prime \prime}(x)=-3 \sin (x)-4 \cos (x)$. (Note that $f^{\prime \prime}(x)=-f(x)$. The same is true for all linear combinations $f(x)=A \sin (x)+B \cos (x)$, where A, B are constants.)
(b) $g(x)=\cot (x)=\frac{\cos (x)}{\sin (x)}$. Your life will be a lot easier here if you simplify the first derivative before differentiating again to get $g^{\prime \prime}(x)$.
Answer:

$$
\begin{aligned}
g^{\prime}(x) & =\frac{\sin (x) \cdot(-\sin (x))-\cos (x) \cdot \cos (x)}{\sin ^{2}(x)} \\
& =\frac{-\left(\sin ^{2}(x)+\cos ^{2}(x)\right.}{\sin ^{2}(x)} \\
& =\frac{-1}{\sin ^{2}(x)} \quad \quad \quad \text { trig identity) } \\
& =-\csc ^{2}(x) \\
\text { Then } \quad g^{\prime \prime}(x) & =-2 \csc (x) \cdot(-\csc (x) \cot (x)) \quad \text { (product rule) } \\
& =2 \csc ^{2}(x) \cot (x) .
\end{aligned}
$$

(c) $h(x)=\sin (x) e^{x}$. Also find the third derivative $h^{\prime \prime \prime}(x)$ for this one.

Answer: By the product rule:

$$
\begin{aligned}
h^{\prime}(x) & =(\sin (x)+\cos (x)) e^{x} \\
h^{\prime \prime}(x) & =2 \cos (x) e^{x} \\
h^{\prime \prime \prime}(x) & =2(\cos (x)-\sin (x)) e^{x}
\end{aligned}
$$

(2) Consider the graph $y=x-\sin (x)$.

Figure 1: The graph $y=x-\sin (x)$ for $0 \leq x \leq 4 \pi$
(a) Do the tangent lines to this graph ever have a negative slope? Why or why not?

Answer: No, since $\frac{d y}{d x}=1-\cos (x)$. This is ≥ 0 for all x.
(b) Do the tangent lines ever have zero slope? Where does that happen?

Answer: Yes, when $\cos (x)=1$. That happens for $x= \pm 2 k \pi$ where k is an integer.
(c) Where do the tangent lines have the steepest positive slope? For which x does that happen?
Answer: The largest positive value of the slope is 2 , which happens at $x= \pm(2 k+1) \pi$ where k is an integer.
(d) Sketch the graph $y=x-\sin (x)$ and check your work with a graphing calculator if you have one (or if one of your classmates can share theirs).
Answer: See graph above for $0 \leq x \leq 4 \pi$:

