MATH 135 - Calculus 1

Higher Derivatives

October 25, 2019

Background

If $f(x)$ is a function, $f^{\prime}(x)$ is often called its first derivative. (In the alternate notation that might be written $\frac{d y}{d x}$ if we're thinking of the graph $y=f(x)$. The reason for this is that it is possible to go on and differentiate $f^{\prime}(x)$ to get another new function. The derivative of $f^{\prime}(x)$, that is, $\left(f^{\prime}\right)^{\prime}(x)$ is also called the second derivative of the original f, and written $f^{\prime \prime}(x)$ or $\frac{d^{2} y}{d x^{2}}$. Continuing in the same way, if we can differentiate $f^{\prime \prime}(x)$, the result is called the third derivative of f, and so forth. The rules for computing these higher derivatives are exactly the same as the rules for computing $f^{\prime}(x)$ to start. Today, we want to practice with these and understand why they are interesting.

Questions

(1) For each function, use the appropriate short-cut rules to find the first derivative, and then differentiate again to get the second derivative:
(a) $f(x)=x^{5}+4 x^{3}+x$. Also find the third derivative $f^{\prime \prime \prime}(x)$, the fourth derivative, the fifth derivative, and the sixth derivative for this one. (What always happens if you differentiate a polynomial function repeatedly enough times?)
Answer:

$$
\begin{aligned}
f^{\prime}(x) & =5 x^{4}+12 x^{2}+1 \\
f^{\prime \prime}(x) & =20 x^{3}+24 x \\
f^{\prime \prime \prime}(x) & =60 x^{2}+24 \\
f^{\prime \prime \prime \prime \prime}(x) & =120 x \\
f^{\prime \prime \prime \prime \prime}(x) & =120 \\
f^{\prime \prime \prime \prime \prime \prime \prime}(x) & =0
\end{aligned}
$$

If you start from a polynomial and differentiate repeatedly, the derivative will eventually become zero, since the degree goes down by one each time. Comment: You can probably also see from the above that adding more and more primes is not a good notation because it becomes difficult to tell how many of them there are. Most mathematicians write $f^{(4)}(x)$ for the 4th derivative, and so forth. The parentheses tell you that this a higher derivative, not an exponent.
(b) $g(x)=\frac{x}{x^{2}-1}$. Your life will be a lot easier here if you simplify the first derivative before differentiating again to get $g^{\prime \prime}(x)$.

Answer: Using the quotient rule and simplifying,

$$
\begin{aligned}
g^{\prime}(x) & =\frac{\left(x^{2}-1\right) \cdot 1-x \cdot 2 x}{\left(x^{2}-1\right)^{2}} \\
& =\frac{-x^{2}-1}{x^{4}-2 x^{2}+1} . \\
\text { Then }^{\prime \prime}(x) & =\frac{\left(x^{4}-2 x^{2}+1\right)(-2 x)+\left(x^{2}+1\right)\left(4 x^{3}-4 x\right)}{\left(x^{4}-2 x^{2}+1\right)^{2}} \\
& =\frac{2 x^{5}+4 x^{3}-6 x}{\left(x^{4}-2 x^{2}+1\right)^{2}}
\end{aligned}
$$

(c) $h(x)=\left(x^{2}+x+1\right) e^{x}$. Also find the third derivative $h^{\prime \prime \prime}(x)$ for this one.

Answer:

$$
\begin{aligned}
h^{\prime}(x) & =\left(x^{2}+3 x+2\right) e^{x} \\
h^{\prime \prime}(x) & =\left(x^{2}+5 x+5\right) e^{x} \\
h^{\prime \prime \prime}(x) & =\left(x^{2}+7 x+10\right) e^{x}
\end{aligned}
$$

(2) So why would we want to be able to differentiate multiple times? The answer is that the second derivative $f^{\prime \prime}$ in particular encodes interesting information about the original function f.
(a) (A physical reason) - If $x(t)$ is the position of a moving object, then the rate of change of position $v(t)=x^{\prime}(t)$ is called the (instantaneous) velocity at t. The rate of change of velocity is $v^{\prime}(t)=x^{\prime \prime}(t)$. What is the physical name for the rate of change of velocity?
Answer: The acceleration.
(b) Suppose we know $f^{\prime \prime}(x)>0$ on some interval (a, b). Recall that $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$. What can we say about f^{\prime} on that interval? Draw pictures illustrating graphs on which $f^{\prime \prime}(x)>0$ for all x. What is the name for the property you are seeing (recall today's video)?
(c) Now, suppose we know $f^{\prime \prime}(x)<0$ on some interval (a, b). Recall again that $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$. What can we say about f^{\prime} on that interval? Draw pictures illustrating graphs on which $f^{\prime \prime}(x)<0$ for all x. What is the name for the property you are seeing?
Answer for b and c : On an interval where $f^{\prime \prime}(x)>0, f^{\prime}(x)$ is increasing. This means that the slopes of the tangent lines to $y=f(x)$ are increasing. On an interval where $f^{\prime \prime}(x)<0, f^{\prime}(x)$ is decreasing. This means that the slopes of the tangent lines to $y=f(x)$ are decreasing. In the first case, we say the graph is concave up; in the second, we say the graph is concave down.
(3) One of the graphs on the back this sheet is $y=f(x)$, and the other two are $y=f^{\prime}(x)$ and $y=f^{\prime \prime}(x)$ for the same function $f(x)$. Which graph is which? (Be careful - these are not polynomial functions, so counting x-axis intercepts or "turning points" might not give the correct result!) Answer: C is the derivative of A and A is the derivative of B. In other words, B is $y=f(x), \mathrm{A}$ is $y=f^{\prime}(x)$ and C is $y=f^{\prime \prime}(x)$. You can see this most clearly by matching horizontal tangents to one graph with zeroes (places where the graph crosses the x-axis) of another.

Figure 1: Plot A

Figure 2: Plot B

Figure 3: Plot C

