MATH 135 - Calculus 1

L'Hopital's Rule
November 18, 2019

Background

Recall that we have defined the derivative of a function at x by using the limit:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

One application of derivatives "turns this around" and uses derivatives to compute limits of indeterminate forms $0 / 0$ or ∞ / ∞ or other limits that can be put into those forms. The precise statement is a bit complicated, but this is really a reflection of the power of the result:

Theorem 1 (L'Hopital's Rule) Let f and g be differentiable on an interval containing a and suppose that $f(a)=g(a)=0$. Assume that $g^{\prime}(x) \neq 0$ on an interval containing a, except possibly at $x=a$. Then

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \tag{1}
\end{equation*}
$$

if the limit on the right exists, or is equal to $\pm \infty$.
The same statement applies if $\lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$. The statement also applies for one-sided limits. The idea that makes this work is that for x close to a (which is what matters in taking the limit) $y=f(x)$ is close to the tangent line $y=f(a)+f^{\prime}(a)(x-a)=f^{\prime}(a)(x-a)$ and $y=g(x)$ is close to the tangent line $y=g(a)+g^{\prime}(a)(x-a)=g^{\prime}(a)(x-a)$. So

$$
\frac{f(x)}{g(x)} \doteq \frac{f^{\prime}(a)(x-a)}{g^{\prime}(a)(x-a)}=\frac{f^{\prime}(a)}{g^{\prime}(a)} .
$$

(The first approximate equality is not an exact equality, of course. But the difference between $f(x)$ and $f^{\prime}(a)(x-a)$ goes to zero "really fast" as $x \rightarrow a$ and $\frac{f(x)}{g(x)}$ goes to $\frac{f^{\prime}(a)}{g^{\prime}(a)}$ in the limit as $x \rightarrow a$.)

Important Note: Note that the rightside of 1 is the quotient of the derivatives. This is different from the derivative of the quotient $f(x) / g(x)$. We would use the quotient rule for that, and the result is not just $f^{\prime}(x) / g^{\prime}(x)$.

Some examples

1. Consider $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin (x)}$. This is a $0 / 0$ indeterminate form since $\lim _{x \rightarrow 0} e^{x}-1=0=\lim _{x \rightarrow 0} \sin (x)$. So we can apply L'Hopital:

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin (x)}=\lim _{x \rightarrow 0} \frac{e^{x}}{\cos (x)}=1
$$

2. Consider $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{1 / 2}}$. This is an ∞ / ∞ indeterminate form. L'Hopital's Rule also applies to this sort of limit, and we get

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{1 / 2}} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{2 x^{1 / 2}}} \\
& =\lim _{x \rightarrow \infty} \frac{2}{x^{1 / 2}} \\
& =0
\end{aligned}
$$

3. (Sometimes we might need to apply L'Hopital more than once. That is OK!) For instance, consider

$$
\lim _{x \rightarrow 0} \frac{\sin (x)-x}{x^{3}}
$$

which is $0 / 0$ indeterminate. Applying L'Hopital twice, we get:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (x)-x}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\cos (x)-1}{3 x^{2}} \text { still } 0 / 0! \\
& =\lim _{x \rightarrow 0} \frac{-\sin (x)}{6 x} \\
& =\frac{-1}{6}
\end{aligned}
$$

The last equation comes because of the trig limit we discussed earlier: $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.
4. Some other indeterminate forms such as 0^{0} or 1^{∞} can be evaluated by taking logarithms first, using L'Hopital, then exponentiating the result. For instance, consider

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

a 1^{∞} form. Taking logs to start, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln \left((1+x)^{1 / x}\right) & =\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}(\text { a } 0 / 0 \text { form }) \\
& =\lim _{x \rightarrow 0} \frac{1}{x+1} \\
& =1
\end{aligned}
$$

Since we took the natural logarithm to start, we need to exponentiate to get the final result:

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}=e^{1}=e .
$$

Note: Some calculus books even take this limit as the definition of the number e.

Practice Problems

1. $\lim _{x \rightarrow \infty} \frac{x}{e^{x}}$

Solution: This is an ∞ / ∞ form, so L'Hopital's Rule applies. Applying the rule,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x}{e^{x}} & =\lim _{x \rightarrow \infty} \frac{1}{e^{x}} \\
& =0 .
\end{aligned}
$$

2. $\lim _{x \rightarrow 2} \frac{x^{3}-5 x^{2}+7 x-4}{x^{3}-x^{2}-8 x+12}$

Solution: This is not a $0 / 0$ form, so L'Hopital's Rule does not apply The limit DNE because $\lim _{x \rightarrow 2} x^{3}-5 x^{2}+7 x-4=8-20+14-4=-2$, but $\lim _{x \rightarrow 2} x^{3}-x^{2}-8 x+12=8-4-16+12=0$.
3. $\lim _{x \rightarrow 0} \frac{\tan (x) \sin (x)}{x^{2}}$

Solution: This is a $0 / 0$ form, so L'Hopital's Rule does apply. After the first application, the limit is still $0 / 0$, so we "do it again."

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (x) \sin (x)}{x^{2}} & =\lim _{x \rightarrow 0} \frac{\sec ^{2}(x) \sin (x)+\tan (x) \cos (x)}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{\sec ^{2}(x) \cos (x)+2 \sin (x) \sec ^{2}(x) \tan (x)-\tan (x) \sin (x)+\sec ^{2}(x) \cos (x)}{2} \\
& =\lim _{x \rightarrow 0} \frac{1 \cdot 1+0-0+1}{2} \\
& =1
\end{aligned}
$$

4. $\lim _{x \rightarrow 0}(\cos (x))^{3 / x^{2}}$ (Hint: Take logarithms first.)

Solution: This is a 1^{∞} indeterminate form. Taking the hint, then applying L'Hopital to the $0 / 0$ limit we get by doing that:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln \left((\cos (x))^{3 / x^{2}}\right) & =\lim _{x \rightarrow 0} \frac{3 \ln (\cos (x))}{x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{-3 \sin (x)}{2 x \cos (x)} \quad \text { still } 0 / 0 \\
& =\lim _{x \rightarrow 0} \frac{-3 \cos (x)}{2 \cos (x)-2 x \sin (x)} \\
& =-\frac{3}{2}
\end{aligned}
$$

The limit is then $e^{-3 / 2}$.

