MATH 135 - Calculus 1
The MVT and Consequences
November 13, 2019

Background

Recall from today's video, recall that we now know a statement called the Mean Value Theorem (MVT):

Theorem 1 (MVT) Let $f(x)$ be continuous on $[a, b]$ and differentiable on (a, b). Then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

The MVT lets us show in a "rigorous" (i.e. complete and convincing) way that some of the patterns we have discussed intuitively actually always hold. For instance

- If $f^{\prime}(x)>0$ on an interval (a, b), then f is increasing on that interval.
- If $f^{\prime}(x)<0$ on an interval (a, b), then f is decreasing on that interval.
- If $f^{\prime}(x)=0$ on an interval (a, b), then f is constant on that interval.

In addition, we get the following way to determine whether a critical point c of f is a local maximum or local minimum:

Theorem 2 (First Derivative Test) Let c be a critical point of a function f.

- If f^{\prime} changes sign from positive to negative at c, then $f(c)$ is a local maximum of f.
- If f^{\prime} changes sign from negative to positive at c, then $f(c)$ is a local minimum of f.
- If f^{\prime} does not change sign at c, then $f(c)$ is neither a local maximum nor a local minimum.

Questions

1. Show that the conclusion of the Mean Value Theorem is true for $f(x)=x^{3}-12 x^{2}+21 x$ on the interval $[-1,10]$. That is, find all the $c \in(-1,10)$ for which $f^{\prime}(c)=\frac{f(10)-f(-1)}{10-(-1)}$. There is a plot of the graph $y=f(x)$ on the back of this page. Draw in lines illustrating the conclusion of the Mean Value Theorem.

Solution: We have $f^{\prime}(x)=3 x^{2}-24 x+21$. Since $f(10)=10$ and $f(-1)=-34$, the slope of the secant line through the endpoints is

$$
\frac{f(10)-f(-1)}{10-(-1)}=\frac{10+34}{11}=\frac{44}{11}=4
$$

Setting $f^{\prime}(x)=4$ we get the quadratic equation $3 x^{2}-24 x+17=0$. We need the quadratic equation for this:

$$
x=\frac{24 \pm \sqrt{(-24)^{2}-4 \cdot 3 \cdot 17}}{2}=4 \pm \frac{\sqrt{93}}{3} \doteq .7854,7.2146
$$

Figure 1: Plot for questions 1 and 3

The tangent lines to the graph $y=f(x)$ at these two x-values are parallel to the secant line through $(-1, f(-1))=(-1,-34)$ and $(10, f(10))=(10,10)$. See plot on back of the page.
2. Slim Shady drove through the EZPass lane and got on the Mass Pike at Allston at 11:00am one morning. He drove west to Auburn and exited through the EZPass lane there at 11:37am. The distance between the two exits is 42 miles. Two weeks later, Slim received a speeding ticket from the Mass State Police for $\$ 150$ in the mail. Should he try to fight this in court, or is the ticket justified? Explain. (Note: The maximum posted speed is 65 miles per hour the whole way.)

Solution: His average velocity while on the Mass Pike was
$\frac{42}{37}$ miles per minute $=\frac{42}{37} \times 60($ miles per minute $)($ minutes per hour $)=68.1$ miles per hour.
That means that he had to be going over the speed limit for a significant portion of the trip. Busted!
3. Now suppose that the graph on the back is $y=g^{\prime}(x)$ for some other function $g(x)$. What are the critical points of $g(x)$? Classify each of them as a local maximum or local minimum using the First Derivative Test above.

Solution: The critical points are $x=0$ and $x=2.1, x=9.9$ (approximately). By the First Derivative Test, g has local minima at $x=0$ and $x=9.9$ since the graph of g^{\prime} is crossing the x-axis from negative to positive there; g has a local maximum at $x=2.1$ since the graph of g^{\prime} is crossing the x-axis from positive to negative there.

